
Not all Dockerfile Smells are the Same:
An Empirical Evaluation of Hadolint Writing Practices by Experts

Giovanni Rosa
STAKE Lab, University of Molise

Pesche, Italy
giovanni.rosa@unimol.it

Simone Scalabrino
STAKE Lab, University of Molise

Pesche, Italy
simone.scalabrino@unimol.it

Gregorio Robles
Universidad Rey Juan Carlos

Madrid, Spain
grex@gsyc.urjc.es

Rocco Oliveto
STAKE Lab, University of Molise

Pesche, Italy
rocco.oliveto@unimol.it

ABSTRACT
Dockerfiles can be affected by bad design choices, known as Dock-
erfile smells. Hadolint is currently the reference tool able to detect
them, and it is widely used both by researchers and practitioners.
The literature shows that these smells are commonly diffused in
Dockerfiles, but it is still not clear how developers perceive them
as bad practices. This paper aims to investigate the relevance of
the Dockerfile smells captured by hadolint from the perspective of
expert Dockerfile developers. We first perform a mining study in
which we extract the change history of Dockerfiles maintained by
experts to understand what smells have been more frequently in-
troduced in their history. Next, we ran a survey in which we asked
expert Dockerfile developers to evaluate Dockerfiles affected by
different smells. We obtained 94 responses for 17 smells, representa-
tive of 24 Dockerfile smells. We found that experts prioritize a small
part of the evaluated smells over others. Besides, they report addi-
tional bad practices not mapped as smells in any existing catalog.
Thus, we propose a ranked catalog containing 26 additional Docker-
file smells, which can be used as a guide for novices to understand
which aspects to focus on to write good-quality Dockerfiles.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools.

KEYWORDS
Empirical Software Engineering, Docker, Code Smells
ACM Reference Format:
Giovanni Rosa, Simone Scalabrino, Gregorio Robles, and Rocco Oliveto.
2018. Not all Dockerfile Smells are the Same: An Empirical Evaluation of
Hadolint Writing Practices by Experts. In Proceedings of 21st International
Conference on Mining Software Repositories (MSR 2024). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR 2024, April 2024, Lisbon, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Docker1 is the most popular containerization platform.2 Its main
purpose is to encapsulate software applications along with depen-
dencies and configurations in a lightweight isolated environment.
This ensures portability, fast deployment, and a lower degree of
variability between testing and production environments. Docker
containers are based on images which are built from Dockerfiles.
Dockerfiles contain instructions written in a domain-specific lan-
guage3 that specify the actions to perform to set up the environment
(e.g., install dependencies).

Similarly to source code, Dockerfiles can be affected by bad de-
sign choices. For the source code, these are often referred to as
code smells [16]. Code smells can lead to technical debt, impacting
negatively on the quality of a software system in terms of maintain-
ability [34]. Code smells for Dockerfiles, also known as Dockerfile
smells, can negatively impact the quality of Dockerfiles [13].

Several tools have been proposed in the literature to detect Dock-
erfile smells [8, 9, 20]. Hadolint [1] is currently the reference tool
used in practice and by researchers to assess the best writing prac-
tices [13, 14, 26]. Such a tool checks for more than 66 rules capturing
the best writing practices based on the official Docker guidelines [6]
and the recommendations of the developer community.

The research literature has investigated how to identify Docker-
file smells and how often they appear [13, 14, 26]. Lin et al. showed
that developers are becoming more and more aware of Dockerfile
best writing practices, as the number of Dockerfile smells is de-
creasing over time. Eng et al. [14] showed that they are still widely
diffused in open-source Dockerfiles, as a large majority of the devel-
opers who create Dockerfiles are not Dockerfile experts [20]. This
brings up a natural question, still unanswered: How do expert devel-
opers perceive the Dockerfile smells? As previously mentioned, most
Dockerfile smells are defined based on Docker guidelines. However,
expert Dockerfile developers, who often find themselves working
on Dockerfiles, could help both the research community and prac-
titioners understand (i) which Dockerfile smells really represent
bad practices, and (ii) whether there are commonly recognized bad
practices missed by the currently available catalog of smells.

1https://www.docker.com/
2https://survey.stackoverflow.co/2023/#section-most-popular-technologies-other-
tools
3https://docs.docker.com/engine/reference/builder/

https://orcid.org/0000-0002-5241-1608
https://orcid.org/0000-0003-1764-9685
https://orcid.org/0000-0002-1442-6761
https://orcid.org/0000-0002-7995-8582
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.docker.com/
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-other-tools
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-other-tools
https://docs.docker.com/engine/reference/builder/

MSR 2024, April 2024, Lisbon, Portugal Rosa et al.

In this paper, we aim at answering such a question. Specifically,
we focus on the smells captured by hadolint, the reference tool
used both in research [13, 14, 26] and in practice. We first perform
a mining-based study in which we mine the code written by ex-
pert Dockerfile developers to understand which Dockerfile smells
have been more diffused in their history. To this aim, we consider
39,242 Dockerfiles directly maintained by developers from Docker.
Second, we ran a survey with 37 expert Dockerfile developers. We
showed each participant three Dockerfiles, each one only affected
by one of the currently known Dockerfile smells, and ask them
if they notice any problem in them. This allows us to understand
if they are able to perceive the bad practice and if they can spot
any other bad practice. Specifically, the respondents had to indicate
(i) what lines are affected by a bad pattern, (ii) to what extent the
pattern should be avoided, and (iii) what are the consequences of
its presence. We obtained a total of 94 responses for 17 different
smell categories selected from the 24 different smells occurring
on Dockerfiles written by experts. Our results show that expert
Dockerfile developers rarely perceive the Dockerfile smells in the
currently available catalog as relevant bad practices, with three of
them never spotted by any participant. Thus, we find that Dockerfile
experts prioritize some of the evaluated smells over others. More
interestingly, Dockerfile experts indicated several other problems
in the Dockerfiles we showed them. This allowed us to propose
a taxonomy with 26 additional Dockerfile smells, which has been
ranked by the relevance Dockerfile experts implicitly assign to each
smell. Such a catalog can be useful for practitioners to have a wider
picture of the typical bad practices when writing Dockerfiles.

The rest of our paper is organized as follows. In Section 2 we
give some concepts on Docker, and we report related works from
the literature. Section 3 presents the results of a mining study to
understand if Dockerfiles written by experts adhere to best writing
practices. In Section 4 we report a survey to understand how ex-
perienced developers perceive Dockerfile smells. In Section 5 we
discuss the results, followed by the proposal of an enhanced catalog
of Dockerfile smells in Section 6. Section 7 presents the threats to
validity. Finally, in Section 8 we summarize the conclusion along
with future directions.

2 BACKGROUND AND RELATEDWORK
In this section, we describe some basic concepts of Docker and
we report existing studies about quality and writing practices for
Dockerfiles.

2.1 Docker Basics
Dockerfiles are used to specify the dependencies and the environ-
ment to containerize a specific software application. A Dockerfile
can extend a base image, i.e., an existing Docker image. Docker-
files are composed of instructions written in a Domain Specific
Language (DSL). Each instruction is composed of a Docker-specific
keyword (e.g., RUN) and one or more arguments. The build process
generates Docker images from Dockerfiles. Docker images are com-
posed of stacked layers, each of them corresponding to the result of
the execution of an instruction. Docker uses a layer caching system
which allows reusing previously built layers to optimize successive
builds of the same Dockerfile.

Docker images are “pulled” and distributed through registries,
which can be publicly accessible (e.g., DockerHub4) or private with
restricted access. Usually, each Docker image is usually assigned
with a tag, indicating the specific version or flavor in the registry.
DockerHub offers a group of selected images labeled as official
images5 that are directly maintained by Docker experts [6].

2.2 Dockerfile Smells
Dockerfile smells are violations of best practices [36]. Hadolint is
the most popular tool for detecting Dockerfile smells, and also
widely used in the literature[13, 14, 26]. The rules enforced by the
tool have been defined by the community based on (i) the official
Dockerfile guidelines provided by Docker, and (ii) the suggestions
of Dockerfile developers (i.e., by submitting pull requests6).

More in detail, the tool detects two categories of violations:
(i) errors in Dockerfile instructions, and (ii) shell-script errors. All
the hadolint rules are identified by a prefix followed by a number
(i.e., DLXXXX or SCXXXX for the two previouslymentioned categories).
There are a total of 66 rules reported in the documentation [6].

Cito et al. [13] were the first to investigate the diffusion of Dock-
erfile smells. Their results show that smells are diffused in open-
source Dockerfiles, where most of the quality issues (28.6%) arise
from missing version pinning. Wu et al. [36] evaluated more than
6k projects reporting the most occurring Dockerfile smells. Their
results show that 84% of GitHub projects contain Dockerfiles af-
fected by Dockerfile smells. Lin et al. [26] performed an extended
evaluation on the quality of Docker images from DockerHub, inves-
tigating also aspects related to the evolution. They report that, even
if Dockerfile smells are widely diffused, there is a decreasing trend
over time, suggesting that developers are more and more aware
of them. Eng et al. [14] proposed an updated version of that study,
extended to 9.4M Dockerfiles, confirming the previous findings.

Previous studies in the literature proposed catalogs of Dock-
erfile smells and detection approaches, different from hadolint.
Henkel et al. [20] proposed the binnacle tool, which checks for a dif-
ferent set of Dockerfile smells extracted by a rule-mining approach
executed directly on the official Dockerfiles written by Docker main-
tainers. A small part of them is common with the hadolint rules. For
example, the aptGetInstallUseNoRec rule checks for the presence of
the flag --no-install-recommends to avoid installing additional
unwanted packages when using apt install. The same check is per-
formed by hadolint with rule DL3015. A different example is the
wgetUseHttpsUrl rule, not supported by hadolint, which checks for
the usage of an HTTPS URL when using wget to download external
sources. This could lead to security issues. An extended set of these
rules is proposed by Zhou et al. [38]. They introduced DRIVE, an
approach for rule mining and smell detection in Dockerfiles support-
ing a total of 34 semantic and 19 syntactic rule violations. Among
those, 9 semantic rules are newly introduced and not supported by
the previous tools. Finally, Bui et al. [12] proposed DockerCleaner,
an approach to detect security-related best practices, based on the
gray literature [7, 10]. Some of the considered smells are in overlap
with those included in hadolint.

4https://hub.docker.com/
5https://docs.docker.com/docker-hub/official_images/
6https://github.com/hadolint/hadolint/pull/114

https://hub.docker.com/
https://docs.docker.com/docker-hub/official_images/
https://github.com/hadolint/hadolint/pull/114

Not all Dockerfile Smells are the Same: An Empirical Evaluation of Hadolint Writing Practices by Experts MSR 2024, April 2024, Lisbon, Portugal

In our study, we considered only the writing rules from the
catalog defined by the hadolint community. Hadolint is currently
the most popular and adopted tool in practice by developers; it has
8.8k stars on GitHub at the time of writing. Other, similar tools, such
as Binnacle7 and DRIVE8 are not as well-known by the community
(i.e., low number of stars), and even if their source code is publicly
available on GitHub, they are still far away from being easy to
adopt by practitioners. Hadolint aims to adhere to the best writing
practices recommended by the official Docker documentation [6],
defined directly by the developer community. Its writing practices
are more oriented towards the composition of Dockerfiles, which is
what we are interested in, while the catalogs of Binnacle and DRIVE
contain mostly semantic rules for scripting and tool usage. For
example, rules like DL3059 (multiple consecutive RUN instructions)
or DL3020 (prefer COPY over ADD for files and folders), included in
the hadolint catalog, are not present in Binnacle [19] or DRIVE [38].

Ksontini et al. show that the available smells are not the main
target of refactoring operations performed on Dockerfiles [23], and
Rosa et al. show that they do not explain the adoption of Docker
images [29]. This means that the existing catalogs might not be com-
prehensive of the observable smells. To the best of our knowledge,
this is the first mining-based study that validates the relevance of
Dockerfile smells by asking developers, in particular those who
have high expertise in the field, and reporting their feedbacks.

3 STUDY 1: DOCKERFILE SMELLS AFFECTING
THE CODEWRITTEN BY EXPERTS

Our first study has the goal of analyzing the Dockerfiles written by
expert Dockerfile developers to understand whether they adhere
to best practices and, if not, which of them they violate more fre-
quently. In detail, the study aims to address the following research
question:

RQ1: What are the best practice rules violated by Dockerfile
experts?

Our hypothesis is that expert developers perceive some best
practices as not important and, thus, there is a higher number of
violations for them.

3.1 Study Context
The context of this first study is composed of 39 official Dock-
erfile repositories, containing 39,242 unique Dockerfiles. The se-
lected repositories come from the Gold Set dataset provided by
Henkel et al. [20]. In detail, the repositories contain Dockerfiles
created and maintained by experienced developers from Docker,
i.e., docker-library,9, that are part of the Docker official images
program.10 In Henkel et al.’s study, they also compared the occur-
rence of best practice violations for Dockerfiles written by less-
experienced developers with those from official repositories, which
resulted to be worse. They reported the same on a set of Dockerfiles
from industrial projects.

7https://github.com/jjhenkel/binnacle-icse2020
8https://github.com/zwlin98/DRIVE
9https://github.com/docker-library/
10https://github.com/docker-library/official-images#what-are-official-images

Table 1: Frequency of Dockerfile smells detected using
hadolint.

Smell Type Description # Occ.

DL4006 Set pipefail to avoid silencing errors 1,550
DL3008 Pin versions in apt-get install 1,117
DL3003 Use WORKDIR to switch to a directory 1,014
DL3047 Avoid bloated logs using --progress with wget 774
DL3018 Pin versions in apk add 615
DL3059 Multiple consecutive RUN instructions 253
DL3015 Avoid additional packages by specifying --no-install-recommends 237
DL3019 Use the --no-cache flag with apk 176
DL3006 Always tag the version of a base image explicitly 90
DL3009 Delete the apt-get lists 43
DL3033 Pin version in yum install 43
DL3042 Avoid cache directory with pip using --no-cache-dir 32
DL3013 Pin versions in pip 18
DL4001 Use only wget or curl, not both 15
DL3020 Use COPY instead of ADD for files and folders 15
DL3028 Pin versions in gem install 13
DL3041 Pin version in dnf install 13
DL3038 Use the -y flag in dnf install 12
DL3014 Use the -y flag in apt-get install 6
DL3027 Prefer apt-get instead of apt 6
DL3007 Prefer an explicit version tag instead of latest 3
DL3025 Use arguments JSON notation for CMD and ENTRYPOINT 2
DL4000 MAINTAINER is deprecated 1
DL3016 Pin versions in npm install 0

We updated the list of the official repositories and retrieved the
latest change history at the current time (i.e., 2023-01-11), obtaining
a total of 37,058 commits. The final dataset can be found in our
replication package [30].

3.2 Experimental Procedure
The first step to answer RQ1 was to extract all the Dockerfile snap-
shots in the change history of the 39 official Docker repositories. We
discarded all the syntactically wrong Dockerfiles. Specifically, we
discarded Dockerfiles for which either (i) hadolint returns DL1000
(invalid Dockerfile instructions), DL3061 (invalid instruction order),
or DL3022 (“COPY --from” should reference a previously defined
FROM alias) or (ii) the official Dockerfile parser11 returns a parsing
error. In the end, we excluded 724 Dockerfile snapshots.

In detail, we report the unique smells affecting all the snapshots
over time for each Dockerfile. This means that, if a rule violation
occurs in all the snapshots of the Dockerfile, we consider it as a
single occurrence.

3.3 Empirical Study Results
We report in Table 1 the ranked list of Dockerfile smells identified by
hadolint on the Dockerfiles in the official repositories maintained by
Docker. The most occurring smells are DL4006 (use of pipefail for
piped operations), DL3008 (missing version pinning for apt-get),
DL3003 (Use WORKDIR to switch directory), and DL3047 (missing
flag --progress forwget). The high occurrence of DL4006 could have
two explanations. First, it could be related to the fact that developers
do not care about such a smell. Second, it could be related to the fact
that such a smell is not easy to spot and, thus, gets easily unnoticed.
The high occurrence of DL3008 (18%) and DL3018 (11%), instead,
more likely suggests that experts do not care about version pinning
of OS packages since this smell is easier to notice.

11https://github.com/asottile/dockerfile

https://github.com/jjhenkel/binnacle-icse2020
https://github.com/zwlin98/DRIVE
https://github.com/docker-library/
https://github.com/docker-library/official-images#what-are-official-images
https://github.com/asottile/dockerfile

MSR 2024, April 2024, Lisbon, Portugal Rosa et al.

Indeed, it can be seen that this is not the same for software depen-
dencies of pip (DL3013), and gem (DL3028), which instead are often
pinned with versions and, thus, they present a lower occurrence
of such rule violations (i.e., less than 1% of relative occurrences).
A reason could be that while developers find it necessary to pin
libraries and framework versions for ensuring API compatibility
with their source code, they find it less useful for OS dependen-
cies that are probably considered less likely to cause such kind of
problems. This is further confirmed by the fact that there are no
occurrences for of DL3016 (Pin versions in npm).

The less occurring smells are DL4000 (deprecated MAINTAINER),
DL3025 (JSON notation for CMD and ENTRYPOINT), and DL3007 (us-
ing latest as base image tag). The only occurrence of DL4000 is
related to a Dockerfile that kept the MAINTAINER instruction after
its deprecation date, even if it was removed shortly after. However,
DL4000 applies only after the effective deprecation of MAINTAINER
in 2017. In total, there are only 2 occurrences of this smell, one
before that date and another immediately after its deprecation.
This is indicative that experts keep attention to the official Docker
guidelines. Finally, it can be observed that developers refrain from
using the latest tag for base images (DL3007, present in only three
Dockerfiles). On the other hand, it often happens that they do not
tag base images at all (DL3006, occurring in 90 Dockerfiles). Those
two smells have the exact same implications because “latest” is
automatically used when the base image tag is missing. However,
“latest” is probably more noticeable, while a missing tag can more
easily get unnoticed.

Û Summary of RQ1: Some Dockerfile smells frequently occur
even in repositories maintained by Dockerfile experts. DL4006
(use of pipefail for piped operations), DL3003 (Use WORKDIR to
switch directory), along with missing version pinning (DL3008
and DL3018) are among the most occurring ones.

4 STUDY 2: EXPERTS’ POINT OF VIEW
The goal of the second study is to understand how expert Dockerfile
developers perceive Dockerfile smells, and if there are bad practices
that are not captured by the current tools.

The second study aims to answer the following research ques-
tion:

RQ2: Are the Dockerfile smells considered bad practices by
expert Dockerfile developers?

We want to know if expert Dockerfile developers identify the
presence of Dockerfile smells, considering them as bad writing
practices that should be avoided. Thus, we want to gather feedback
on the importance (or not) of the identified smells and bad practices.

To answer our research question, we ran a survey with expert
Dockerfile developers from the open-source community. We ex-
plain below how we selected participants and smells, and how we
designed the study.

4.1 Context Selection
Our context is composed by both subjects and objects. The subjects
are expert Dockerfile developers, while the objects are Dockerfile

smells. We describe below the procedure we used to select both
subjects and objects for our study.

4.1.1 Participants Selection. Our target population is a subset of
developers with extensive experience in Dockerfile development.
It is particularly difficult to find developers with such character-
istics because the Docker community has few expert developers
compared to other developer communities [17].

We opted for a sampling strategy that consists of the selection of
contributors from GitHub repositories, which is a common practice
in the literature [18, 21, 24, 25, 37, 39]. In detail, we perform a con-
venience sampling [15] to select a subset of experienced Dockerfile
developers from source repositories of the most popular public
Docker images. To achieve this, we started from the set of reposi-
tories used to run the first study and extended it by including the
repositories of the most pulled community images fromDockerHub,
extracted from the dataset proposed by Lin et al. [26]. Such a dataset
contains the metadata for ∼3M DockerHub images along with their
source repository, for a total of ∼440k GitHub and BitBucket reposi-
tories. After ranking the Docker images by the number of pulls, we
selected a subset of the corresponding GitHub repositories of the
top-ranked images. Thus, we selected a total of 3,048 repositories,
including 47 Docker official image repositories.

From such a set of repositories, we extracted all the contributors
that performed (i) at least 2 contributions, (ii) contributed to at least
2 different repositories, and (iii) had public contact information. As
for the latter point, we discarded developers for which we had the
email address extracted from the git logs but who did not publicly
share it in their GitHub profile for privacy-related reasons. We
selected, in the end, 931 potential participants.

We sent the invitations according to online survey best prac-
tices [2, 3]. Only 37 of them agreed to participate (∼4.0% acceptance
rate). Both the absolute number of participants and the acceptance
rate are comparable with similar studies [24, 25, 28, 32, 35].

4.1.2 Dockerfile Smells Selection. Instead of running our study on
all the Dockerfile smells, we decided to do it on a representative
subset of the smells, mainly by grouping similar smells and not
considering those that we have not found in Study 1when analyzing
the official Dockerfile repositories. We started with the full set of
Dockerfile smells. Then, we removed smells that never affected
official Dockerfile repositories (as reported in the results of our first
study). We were left with 24 Dockerfile smells. Note that we kept
also a smell that never occurred in any official Dockerfile (DL3016,
pin versions for npm) since it is very similar to other smells that
actually occurred (i.e., DL3013 and DL3028, which are related to
different technologies, i.e., pip and gem, respectively).

At this stage, we discarded the smells that are similar to oth-
ers (i.e., they are a variant for other tools or OSes) and that would
reasonably be redundant for our study. Since ubuntu is themost pop-
ular base image, we excluded DL3018, DL3033, and DL3041, since
they are variants of DL3008 (Missing version pinning of apt-get
packages) for different — less popular — OS package managers.

Similarly, we discardedDL3019 because it is equivalent to DL3009
(deletion of apt-get sources lists) but for apk, and DL3038, which
is equivalent to DL3014 (use the -y switch for apt-get install) but
for the dnf package manager.

Not all Dockerfile Smells are the Same: An Empirical Evaluation of Hadolint Writing Practices by Experts MSR 2024, April 2024, Lisbon, Portugal

A smelly Dockerfile

is proposed for the

evaluation

S1Q1

Do you see any

bad patterns?

no

yes

The participant indicates

the lines containing

bad patterns

A diff with the previous

Dockerfile is shown where

the smell is highlighted

and solved

Do the change

removes

a bad pattern?

no

yes

The participant chooses

the smell relevance level

(Likert 1-5)

The participant explains

why the bad pattern

should be avoided

START

END

END

S1Q2

S1Q2*

S2Q1 S2Q2

Figure 1: Summary workflow of the survey conducted to answer RQ2. Each action represents a survey question, corresponding
to an identifier. For example, S1Q2 identifies the first question (Q1) of section one (S1).

We discarded D3028 and DL3013 because they are variants of
DL3016 (pin versions for npm) for gem and pip. Also, in this case,
we selected the smell related to the more popular technology, based
on the number of available packages12. In the end, we were left
with a total of 17 smells.

4.2 Experimental Procedure
We report below how we collected data and how we analyzed them
to answer our research question.

4.2.1 Data Collection. We first prepared 17 Dockerfiles, one for
each selected Dockerfile smell. The first author wrote such Dock-
erfiles, starting from those present in the open-source community
(i.e., git repositories and tutorials). The aim is to produce clean
Dockerfiles (i.e., without smells) that are as close as possible to the
starting open-source example. Next, we ran hadolint on all of them
to make sure that it detected no issues. Then, we artificially injected
one of the smells on each Dockerfile. Again, we ran hadolint on all
of them to make sure each of them had only the smell we decided to
inject. In that case, the aim is to have only one smell per Dockerfile
to avoid any bias that can come from the co-occurrence of multiple
smells. Finally, we prepared 17 tasks for the participants, each of
them regarding a randomly chosen Dockerfile among the ones we
created. We detail the structure of the tasks below. Note that the
final aim of each task is to evaluate if developers perceive the smell
as bad pattern to avoid, and not to evaluate they skill in identifyng
smells. Participants could run the survey offline, whenever they
preferred (i.e., we did not have execution control). It was structured
as follows:

Pre-questionnaire. The survey starts with a form in which
there is (i) a description of the purpose of the survey, (ii) information
about the data we collect, and (iii) a request for consent in which
the participant agreed with the reported information.

We also ask for general information about the professional expe-
rience: the current working position, total years of programming
experience, experience with Docker development, and how much
time they spend on open and closed-source projects. We request

12npm counted more than 2.1M packages in 2022 [5], while pip had ∼350k in the same
year [4] and gem has 178k packages in 2023 [11].

only the minimal information to assess the experience of the par-
ticipants, as in some cases this kind of questions can discourage
some of them from completing the survey [27].

Task execution. Next, participants were asked to complete a
total of three tasks, randomly selected among the ones having the
lowest number of already provided evaluations. We did this to keep
a balanced number of evaluations for each Dockerfile smell. This is
to obtain, at the end, approximately the same number of validations
for each smell.

A summary workflow of each task is depicted in Fig. 1. In the
first step (i.e., S1), participants were initially presented with the
Dockerfile at hand. They were asked whether they noticed any
bad practices in the provided Dockerfile. It is worth noting that,
here, we do not explicitly refer to “Dockerfile smells”, but we ask
participants to identify “bad practices”. This is because we want
to keep the concept of bad practices as open as possible so that
developers can indicate what they consider a bad practice. If they
did not find any bad practices, we presented them with the original
version of the Dockerfile (i.e., without the Dockerfile smell) and
asked them if the performed change removed any bad practices.
If the answer to the latter question was no, the survey ended. If,
instead, the answer to the second question (or to the first one) was
positive, participants were asked to report (in an open text box)
any identified bad practice, along with the respective affected line
numbers. In the second step (i.e., S2), we asked to indicate to what
extent they perceived each identified bad practice as relevant (Likert
scale from 1 to 5). We also asked to specify why the identified bad
practice should be avoided according to them.

Post-questionnaire. In the last part, participants could provide
contact information and consent to reach them out later for being
asked additional questions. The goal of this was to send them a
very short post-questionnaire in which we explicitly asked (i) if
they know what Dockerfile smells are and (ii) if they use tools that
support the quality assessment of Docker artifacts.

The survey requires about 15 minutes, and 5 minutes for the post-
questionnaire that we sent later (i.e., after a month, approximately).
We report in Table 2 all the questions contained in the survey for
each step.

MSR 2024, April 2024, Lisbon, Portugal Rosa et al.

Table 2: Survey questions asked to answer RQ2.

ID Question Answer Type

Pr
e-
su
rv
ey

S0Q1 What is your current primary occupation? Multiple choice
S0Q2 What kind of projects do you spend most of your time on? Multiple choice
S0Q3 How many years of experience do you have in software development activities? Multiple choice
S0Q4 How long have you been using Docker and Dockerfiles during your development activities? Multiple choice
S0Q5 How do you estimate your expertise in writing Dockerfiles compared to the most experienced person

you work/have worked with (1-5)?
Likert scale (1-5)

Se
ct
io
n
1

S1Q1 Considering the proposed Dockerfile, do you think it is necessary to apply some improvements to
the code (e.g., fix bad patterns) in order to work correctly and without problems in a production
environment?

Multiple choice

S1Q2 Please specify which lines you would improve and the reason for the improvement. For example, "Line
X: Contains problem Y..."

Open-Ended

S1Q2* Here you can see the previous Dockerfile with some modifications applied. In your opinion, do these
changes improve the Dockerfile by fixing a bad pattern?

Multiple choice

Se
ct
io
n
2

S2Q1 To what extent do you think that the previously reported issues (i.e. bad writing patterns) must be
avoided in a Dockerfile that has to be used in a production environment (1-5)?

Likert scale (1-5)

S2Q2 Can you explain the answer provided in the question above? Please assume that you are talking to a
novice developer who is learning to write Dockerfiles. Examples are: "You should avoid the pattern X
as it can cause issues when..." "Using the pattern X is ok if you do not care about coding conventions..."

Open-Ended

We ran a pilot study with 11 participants — personal contacts
of the authors having different roles and experience in software
development — to ensure that the questions were clear and to avoid
any misleading interpretation. The survey was updated after each
feedback was received. The Dockerfiles that we propose in each
task are available in our replication package [30].

4.3 Data Analysis
To answer RQ2, we report a quantitative and qualitative analysis
based on the responses obtained from our survey. We follow the
common practices used for survey analysis [22, 24]. To answer
RQ2, we report some general information about the professional
background of the participants (i.e., from the pre-questionnaire ques-
tions) to describe the demographics of the selected population. Then,
we report what smells are considered bad practices by the expe-
rienced developers, along with the measure of how much these
smells should be avoided (i.e., assessed in S2Q1). Since the answers
are open-ended, we needed to qualitatively analyze them to map
the declared bad practices to the Dockerfile we were interested in.
Simply, we manually verified if the provided open-ended question
in which the respondents indicated the presence of a bad pattern
(i.e., S1Q2) corresponds to the smell under evaluation. For the cases
in which the smell has been spotted in the second chance, there
is no need for validation as the answer is a multiple choice. We
counted in how many cases each Dockerfile smell was correctly
identified. Also, we associated each identification to the step in
which this happened (either before or after showing the participant
the correct Dockerfile).

4.4 Results
We excluded two participants because they entered three invalid
responses (i.e., the open answers only contained dots or spaces).

Thus, we obtained 94 valid responses collected iun a period of two
weeks, appoximately. Most of the participants completed all the
three tasks, while the others completed either one or two tasks
and stopped the survey beforehand. On average, each participant
completed 2.6 tasks. We first report some information about the
demographics of the participants and, later, the details about the
analysis we performed to answer RQ2.

4.4.1 Demographics. When asked about their primary occupation,
most of the participants reported that they are professional devel-
opers (35), except one who is a Master/PhD student. Half of the
participants (17) mainly work on open-source projects, while 10 of
them spend equal time on both open- and closed-source projects.
Only 9 of the participants workmostly on closed-source projects. To
effectively measure the overall programming experience and expe-
rience with Docker of the participants, we followed the guidelines
provided by Siegmund et al. [31]. When asked about their overall
programming experience, 23 of the responses are from those with
more than 10 years of experience. Also, 5 participants have between
7 and 10 years of experience, and the same number between 5 and
7 years. The remaining responses (3) are from developers with
between 1 and 5 years of experience.

In Fig. 2 we report a plot of the reported number of years of
experience with Docker. 12 of the participants have more than 7
years of experience. This means that they have been using Docker
almost since when it was introduced in 2013.

In Fig. 3 we report on the self-assessment of the expertise in
Dockerfile writing compared to the most experienced present or
past co-worker. Most of the participants identify themselves with
a score of 4 - experienced (15) or 5 - very experienced (15). A total
of 20 participants agreed to answer additional questions. After

Not all Dockerfile Smells are the Same: An Empirical Evaluation of Hadolint Writing Practices by Experts MSR 2024, April 2024, Lisbon, Portugal

0 -
 1

ye
ars

1 -
 2

ye
ars

2 -
 3

ye
ars

3 -
 4

ye
ars

4 -
 5

ye
ars

5 -
 6

ye
ars

6 -
 7

ye
ars

7+
 ye

ars

Docker usage (years)

0

2

4

6

8

10

12

R
es

po
ns

es

Figure 2: Docker experience (in years) of the survey partici-
pants.

0% 83%17%Expertise in
Dockerfile writing

100 50 0 50 100
Percentage

Response 1 2 3 4 5

Figure 3: Dockerfile writing expertise measured using a Lik-
ert scale, varying from 1 - very inexperienced to 5 - very expe-
rienced.

Table 3: Number of Dockerfile smells identified by practition-
ers, with a representation of the identification percentage.

Dockerfile Smell # Identified First Chance Second Chance

DL3007 4/5 4/4 0/4
DL3059 4/6 4/4 0/4
DL3006 4/6 3/4 1/4
DL3016 3/6 3/3 0/3
DL3014 2/4 2/2 0/2
DL4000 3/6 3/3 0/3
DL3042 3/6 2/3 1/3
DL3008 2/5 1/2 1/2
DL3025 2/6 2/2 0/2
DL4006 2/6 2/2 0/2
DL3027 2/6 0/2 2/2
DL3015 1/5 0/1 1/1
DL4001 1/5 0/1 1/1
DL3009 1/6 1/1 0/1
DL3003 0/5
DL3047 0/5
DL3020 0/6

sending the invitation, 7 of them answered the questions of the
post-questionnaire within a period of ten days, approximately.

0%

0%

0%

0%

0%

0%

0%

0%

0%

50%

0%

0%

50%

100%

100%

100%

100%

100%

100%

100%

75%

75%

50%

50%

0%

0%

0%

0%

0%

0%

0%

0%

0%

25%

25%

0%

50%

100%

50%

DL3006

DL3007

DL3008

DL3009

DL3016

DL3014

DL3015

DL3025

DL3027

DL3042

DL3059

DL4000

DL4006

100 50 0 50 100
Percentage

R
ul

e
Vi

ol
at

io
n

Response 1 2 3 4 5

Figure 4: Developers’ evaluation of the extent to which a
Dockerfile smell should be avoided measured in S2Q1 (Ta-
ble 2) using a 5-point Likert scale (from 1 - “Strongly disagree”
to 5 - “Strongly agree”).

4.4.2 RQ2: Are the Dockerfile smells considered bad practices by
expert Dockerfile developers? In Table 3 we report the summary of
the responses that we collected. Participants correctly identified
the smell in 36% of the total cases. For 3 out of the 17 evaluated
smells, however, they did not consider the smell as a bad practice.
Those are DL3003 (Use WORKDIR to switch directory), DL3020 (Use
COPY instead of ADD for files and folders) and DL3047 (wgetwithout
flag --progress). Smells related to the base image version pinning,
namely DL3006 and DL3007, received the highest percentage of
identifications. The same is valid for DL3059 (multiple consecutive
RUN instructions). Those smells have been identified in the first
evaluation of the smelly Dockerfile requested in S1Q1 (Table 2).

In Fig. 4, we report the smell relevance evaluated in S2Q1. Smells
DL3009 (Deletion of apt-get sources lists), DL3016 (Pin versions
for npm) and DL3042 (--no-cache-dir for pip install) have the
highest agreement in terms of relevance (i.e., all the evaluations
“strongly agree” with the fact that the bad practice must be avoided).

Interestingly, base image pinning smells (DL3006 and DL3007)
received, in some cases, a neutral evaluation. This could be related
to the fact that, when a specific version tag is missing, latest is used.
Thus, developers interpret this as the latest version of that specific
base image. For rule violations DL3027 (Prefer apt-get over apt)
and DL3014 (Use the -y flag in apt-get install) some of the
responses are “2 - disagree” or “3 - neither agree or disagree”. None
of the evaluations expresses agreement, thus we can conclude that
those smells are likely to not be considered bad practices to avoid.
Moreover, looking at the results of the post-questionnaire, 5 of the 7
participants never heard about Dockerfile smells.

When asking them about the quality issues they encountered in
the past development experience, they reported: Too large base im-
ages, missing multi-stage builds, copying of unnecessary files, and
layering issues. We also asked the respondents about supporting

MSR 2024, April 2024, Lisbon, Portugal Rosa et al.

tools they know and use during development which are, in addi-
tion to hadolint: the Docker VSCode extension, shellcheck (some
of the violations are contained also in hadolint), the docker inspect
command, dive13 (i.e., a tool to inspect Docker image layers), and
shfmt14 (i.e., a shell script formatter).

Û Summary of RQ2: Most of the smells are recognized by
at least one participant, even though three of them are never
identified. There is a difference among smells in terms of their
identifiability and perceived relevance. In 64% of the cases, de-
velopers were not able to identify the Dockerfile smells.

5 DISCUSSION
We distilled some lessons learned that will hopefully help both
practitioners (for deciding their quality assurance policy on Dock-
erfiles), and researchers (for advancing the state-of-the-art on this
topic and devising new approaches for detecting smells).

Lesson 1. Not all the Dockerfile smells are “smells”. Com-
paring the results of the two RQs, it can be noticed that, generally,
the most occurring smells are not perceived as such by practitioners.
To confirm this intuition, we computed the Spearman’s rank cor-
relation coefficient between the two rankings (i.e., most occurring
smells and most perceived smells). We obtained a weak negative
correlation (𝜌 = 0.32), i.e., the more a smell occurs, the less it is
perceived as such by practitioners. While the correlation is weak,
this might still be an explanation for the presence of smells in offi-
cial Dockerfiles: Some of them are simply not considered as such.
This is particularly clear for some of them. For example, DL3003
(Use WORKDIR to switch directory), which occurs very frequently
(1,014 times) in official Dockerfiles (RQ1), has never been perceived
as such by expert developers (RQ2). Some other Dockerfile smells,
instead, occur frequently even though they are perceived as such by
expert developers. This is the case, for example, of DL3059 (multiple
consecutive RUN instructions), which occurs in 253 official Docker-
files even though developers perceive it as a bad practice (4/6 expert
developers identified such a smell), and DL3006 (Missing version
pinning for base image), which occurs in 90 official Dockerfiles
even though it has been identified by 4 developers out of 6 in our
survey. We conjecture that these Dockerfile smells depend on the
context, and hadolint fails in catching this aspect.

For example, the following FROM instruction:

FROM alpine:{{env.variant | ltrimstr("alpine")}}

is identified as smell DL3006 (Missing version tag) by hadolint,
which is not true. As reported by the hadolint community, in some
cases knowing the context defines if a practice is “good” or “bad”.
An example is smell DL302015.

Another example is smell DL3008. In that case, pinning package
versions requires continuous maintenance to keep versions up-to-
date as it could lead to reliability issues in the future. This applies,
specifically, to OS packages. Instead, missing version pinning for
dependencies (e.g., DL3013) is less diffused (Table 1).

13https://github.com/wagoodman/dive
14https://github.com/patrickvane/shfmt
15https://github.com/hadolint/hadolint/issues/693

Lesson 2. Developers prioritize performance and security.
Looking at the overall topics reported in the survey responses, de-
velopers are mostly concerned about the image size, the build time
and security issues. One of the participants explicitly reported that
the effort invested in good writing practices should be focused on
such aspects. An example smell is DL3020 (prefer COPY over ADD for
files and folders), that has not been reported by none of the respon-
dents. This could be related to the fact that, in most of the cases, it
is not strictly related to the functionality of a Dockerfiles. In fact,
for the analyzed Dockerfiles containing smell DL3020, the answers
are about functional aspects (e.g., avoid using root as container
user). On the other hand, since the ADD instruction is fine when
copying archives it is not wrong as a practice, compared to differ-
ent cases (e.g., using MAINTAINER which is deprecated). Hadolint,
however, fails in catching most of such aspects. This suggests that
the actual smells do not fully cover all such implicit non-functional
requirements of Dockerfiles. For example, only a few of them are for
security best practices. In particular, rules DL3002 (Last user should
not be root) and DL3011 (Invalid UNIX port range) are concerned
with users and permissions. Furthermore, DL3059 (multiple con-
secutive RUN instructions) and DL3015 (Avoid additional packages
by specifying --no-install-recommends) are some examples that
can help to reduce the image size.

Additionally, some of the unidentified violations are not harmful
(e.g., DL3003 - Use WORKDIR to switch directory). This also shows
that not all the smells are a priority for the developers, specifically
when there is not a direct impact on the resulting Docker image.

6 TOWARDS AN ENHANCED CATALOG OF
DOCKERFILE SMELLS

The results of the two previous studies suggest that the current
Dockerfile smells catalog is not comprehensive regarding bad prac-
tices. This is supported by the fact that when analyzing the re-
sponses of the survey participants in the second study (Section 4),
we found that they reported smells that are currently not part of
the catalog captured by hadolint in 51% of the cases.

In this section, we wrap up all the obtained results to propose an
enhanced catalog of smells, categorized in terms of their relevance
to indicate what are the basic best practices that developers should
care about when writing or maintaining Dockerfiles.

6.1 Collecting Recommendations from the
Experts’ Responses

As a first step, we wanted to categorize the best practices suggested
by developers and not captured by hadolint. To do this, we per-
formed a card-sorting-inspired approach [33] to categorize the new
recommendations provided by the participants in the open-ended
questions. First, one of the authors collected as-is all of those recom-
mendations (i.e., S1Q1 and S2Q2). Next, a second author validated
those tags reaching a perfect agreement with the first author.

After this, one of the authors proposed a first categorization of
the selected recommendations, and subsequently discussed and
re-arranged them together with a second author. The discussion
phase has been repeated until reaching a consensus on the final
categorization. The two authors excluded the recommendations that
are not clear, or applicable only to the specific Dockerfile contect in

https://github.com/wagoodman/dive
https://github.com/patrickvane/shfmt
https://github.com/hadolint/hadolint/issues/693

Not all Dockerfile Smells are the Same: An Empirical Evaluation of Hadolint Writing Practices by Experts MSR 2024, April 2024, Lisbon, Portugal

which they have been reported. We report in Fig. 5 a summary of
the bad writing practices identified by the experienced developers
indicating whether or not they correspond to an existing Dockerfile
smell and why the smell should be avoided. We defined a total of
five different macro-categories as described in the following.

Size. Being the category having the highest number of occur-
rences (26), it contains the recommendations that help to keep the
size of the Docker image as small as possible. For example, prefer-
ring to use multi-stage Dockerfiles (8 occurrences) helps to keep the
images small (i.e., separating the build container from the execution
container), and copying only the relevant files in the image from
the build context (8 occurrences). This is, again, to keep the Docker
image small avoiding unnecessary files (e.g., “the pattern COPY . .
should be avoided!”).

Execution.With a total of 17 occurrences, this category contains
the bad practices impacting the execution of the Docker image built
from the Dockerfile. One of the most reported and important bad
practices that is not captured in the current catalog is the usage of
the default user root (11 occurrences). Dockerfile should change
to a regular one to avoid security issues when running containers.
Note that hadolint partially identifies such an issue (DL3002), but
the tool is only able to detect explicit switches to root; if the user
is implicitly root, it fails in identifying it. Also, developers should
prefer a binary executable for ENTRYPOINT (3 occurrences). For
example, a shell allows to debug containers more easily. Another
suggestion is to avoid silencing exit signals (1 occurrence). This is to
avoid zombie processes (i.e., orphaned containers) if the process exit
signal is not handled correctly. An interesting suggestion consists in
using the tool tini along with the starting command of the container
to avoid the previously-mentioned issue.

Software versions. This category contains the recommenda-
tions to follow for the correct handling of the software and versions
used in the Dockerfile (13 total occurrences). The most reported
recommendation is to prefer popular Docker images (5 occurrences)
because they are more likely to be maintained and updated. Also,
it is important to ensure that both the packages and the base image
versions are up-to-date (4 occurrences) to avoid reliability issues in
the future due to outdated packages (e.g., security vulnerabilities).

Build. With a total of 14 occurrences, this category contains
the best practices to follow to improve the build process of the
Docker image. For example, copying and installing dependencies
before sources (6 occurrences) allows to take advantage of the
caching mechanism, speeding up the successive builds. Also, us-
ing a .dockerignore file (2 occurrences) allows to exclusion of
unnecessary files from the build context to the image.

Code Structure. This category contains the recommendations
to follow to improve the code readability and maintainability of the
Dockerfile (7 occurrences). For example, a good practice is to avoid
hard-coded values (6 occurrences) for the base image tag, software
packages, and other non-static configurations (e.g., ports) to make
the Dockerfile code more flexible.

Despite it being in contrast to version pinning smells, experts
recommend using placeholders, along with default values, when
specifying the version to easily maintain the Dockerfile and the
resulting image up-to-date. In addition, it is better to perform a
checksum of the downloaded sources (1 occurrence), e.g., by using
wget, to avoid corrupted files and security issues.

Table 4: Ranked list of best practices along with the normal-
ized frequencies. The icon represents whether the practice
is suggested by experts (±) and/or included in existing cat-
alogs, i.e., hadolint (¿), Binnacle [20] (O), DRIVE [38] (Ø),
and Dockercleaner [12] (�).

Rank Source Description Freq.

1 ¿ Prefer an explicit version tag instead of latest (DL3007) 1.00
1 ±/¿/Ø/� Avoid root (∼DL3002) 1.00
2 ¿ Always tag the version of a base image explicitly (DL3006) 0.79
2 ¿ Multiple consecutive RUN instructions (DL3059) 0.79
3 ±/Ø Prefer multi-stage Dockerfiles 0.70
3 ± Copy only the necessary files from the build context 0.70
4 ¿/O/Ø Avoid cache directory with pip using --no-cache-dir (DL3042) 0.52
4 ¿/O/Ø Use the -y flag in apt-get install (DL3014) 0.52
4 ¿ MAINTAINER is deprecated (DL4000) 0.52
4 ¿/� Pin versions in npm install (DL3016) 0.52
5 ± Copy dependencies before sources 0.50
6 ± Prefer popular base images (official/community) 0.40
6 ± Join non-consecutive RUN instructions 0.40
7 ¿/� Pin versions in apt-get install (DL3008) 0.37
8 ± Avoid hard-coded package versions 0.30
8 ± Avoid pip upgrade 0.30
8 ± Prefer smaller base images 0.30
9 ¿/Ø Set pipefail to avoid silencing errors (DL4006) 0.25
9 ¿ Use arguments JSON notation for CMD and ENTRYPOINT (DL3025) 0.25
9 ¿ Prefer apt-get instead of apt (DL3027) 0.25
10 ± Prefer a binary executable for ENTRYPOINT 0.20
11 ± Declare ports usage 0.10
11 ± Use .dockerignore 0.10
11 ± Use VOLUME for Configuration Files 0.10
11 ± Use VOLUME for Dependencies Cache 0.10
11 ± Avoid outdated base image 0.10
11 ± Prefer up-to-date packages and sources 0.10
12 ¿/O/Ø/� Use –no-install-recommends for apt (DL3015) 0.05
12 ¿ Use only wget or curl, not both (DL4001) 0.05
13 ± Extract stage in a separate Dockerfile 0.00
13 ± Avoid hard-coded base image tag 0.00
13 ± Avoid hard-coded app-related configuration 0.00
13 ± Use VOLUME for App Data 0.00
13 ¿/O/Ø Delete the apt-get lists (DL3009) 0.00
13 ± Set WORKDIR to simplify the copy of nested files 0.00
13 ± Avoid silencing exit signals 0.00

6.2 Ranking Dockerfile Smells
Many developers who have no or little expertise in writing Docker-
files find themselves in need of writing or maintaining one. These
developers do not know on what aspects to focus to have a good
enough Dockerfile in terms of writing quality.

As a further contribution of this work, based on the frequency of
the bad practices identified by the developers, we propose a ranked
list of the Dockerfile smells analyzed in this work. In detail, we
considered the frequencies of the best practices (i) identified in
our second study (i.e., hadolint rules), and (ii) suggested by expert
developers as “new” in their answers (described in Section 6.1). We
perform min-max scaling for the frequency values of the two sets,
independently. Then, we ordered them by the normalized frequency
value. At the end, for each frequency value, we assign a rank.

In Table 4 we reported the ranked list of best practices. We also
reported the overlap with other catalogs proposed in the literature,
namely Binnacle [20], DRIVE [38], and DockerCleaner [12].

Thus, to meet a minimum quality level when writing Dockerfiles,
developers should focus at least on the most frequently reported
best practices by experts (e.g., ranks 1-5, normalized frequency
≥ 0.5). This means, for example, that they should pay attention to
providing version pinning for the base image and dependencies
(DL3006, DL3007, and DL3016), prefer using a regular user for
Docker images, optimize the instruction order (e.g., multi-stage

MSR 2024, April 2024, Lisbon, Portugal Rosa et al.

Avoid hard-coded values
Prefer smaller
base images

Prefer multi-stage
Dockerfiles

Avoid silencing
exit signals

Copy dependencies
before sources

Use .dockerignore

Ensure up-to-date
versions

Prefer popular
base images

Copy only the necessary
files from the build context

Declare ports usage

Use VOLUMEs for
persistent data

Perform checksum for
 downloaded sources

Dependencies Cache

Configuration files

Avoid hard-coded
package versions

Avoid hard-coded
base image tag

Avoid hard-coded
app-related configuration

Avoid outdated
base image

Prefer up-to-date
packages and sources

Build

Software versions

Code structure

Size

Execution

Join non-consecutive
RUN instructions

5

8

8

17

1

13

5

4

2

2

14

7
6

1

4

2

6

2

2

5

4

1

1

App data
1

Prefer a binary executable
for ENTRYPOINT

Avoid root

2

3

11

Set WORKDIR to simplify
the copy of nested files

1

Avoid pip upgrade
4

Extract stage in a separate
Dockerfile

1

26

Figure 5: Categorization of the best practices recommendations provided by experts during our survey.

build), and avoid the copy of unnecessary files (e.g., copy only the
required sources from the build context).

Moreover, some of those practices have been also discussed in
the gray literature. For example, smell DL3007 (Version pinning for
the base image) and “Avoid root” has been reported in a blog article
about Docker best practices16. This means that a further investiga-
tion of the gray literaturewould help to build a more comprehensive
catalog of the common practices suggested by developers.

7 THREATS TO VALIDITY
In this section, we report the threats to the validity of our study.

Construct Validity. The Dockerfile smells evaluated in our
study are limited to those checked by hadolint, which is currently
the most popular tool adopted in previous work. We found some
customization of hadolint in the official Dockerfiles evaluated in
RQ1, i.e., the comment line # hadolint ignore=DLXXXXwhich dis-
ables the detection of one or more rules. This shows that, in addition
to the popularity of its GitHub repository (i.e., 9.1k stars), hadolint
is adopted in practice to check violations in their Dockerfiles.

Internal Validity. The selection criteria of the survey partici-
pants could be perceived as not very strict (minimum of 2 contribu-
tions), for which we adopted a convenience sampling. We believe
that the selected participants have a sufficient expertise level be-
cause (i) the Dockerfile developers community is smaller compared
to others, and (ii) we selected a very specific population of those
involved in repositories linked to some of the most popular Docker
images available in DockerHub. Also, we relied on publicly avail-
able information, a common practice used in similar studies [39],
16https://dev.to/techworld_with_nana/top-8-docker-best-practices-for-using-
docker-in-production-1m39

that misses closed source contributions. In addition, the survey
participants could misunderstand the wording of some questions.
To overcome this, we tested and adjusted the survey with 11 par-
ticipants having different backgrounds (faculty, students, and de-
velopers) and are familiar with Docker. Finally, since we proposed
ad-hoc defined Dockerfiles for our survey, they could not be rep-
resentative of the overall population. However, they are inspired
from open-source Dockerfiles to be as similar as possible to those
used in practice.

External validity. In our survey, the participants identified bad
writing patterns in the proposed Dockerfiles assuming that they
have to be used in a production environment. This means that our
findings might not be generalized to Dockerfiles written in differ-
ent development contexts. Also, they are specific for Dockerfiles
and the Docker platform. Finally, the bad practices not currently
mapped by hadolint that participants could identify are those that
we unintentionally introduced in the Dockerfiles proposed in the
survey. It is very likely that more Dockerfile smells exist that are
currently unknown.

8 CONCLUSION AND FUTUREWORK
Docker is the leading technology for software containers, widely
adopted in practice. Several best practices have been proposed and
investigated in the literature, along with tools that support devel-
opers to avoid bad practices (i.e., Dockerfile smells). Specifically,
we focused on the writing practices captured by the state-of-the-
practice hadolint tool. We first ran a study on official Dockerfiles to
learn what smells appear most frequently in code written by experts.
Then, we conducted a survey with expert Dockerfile developers
to understand their perception of smells. We found that (i) official

https://dev.to/techworld_with_nana/top-8-docker-best-practices-for-using-docker-in-production-1m39
https://dev.to/techworld_with_nana/top-8-docker-best-practices-for-using-docker-in-production-1m39

Not all Dockerfile Smells are the Same: An Empirical Evaluation of Hadolint Writing Practices by Experts MSR 2024, April 2024, Lisbon, Portugal

Dockerfiles contain smells, and (ii) expert Dockerfile developers
perceive some of the smells as more important than others. As a
final result, we defined a prioritized catalog of smells that provides
a clear guide to less experienced developers to write better Docker-
files. We plan to further validate our prioritized catalog of smells
through interviews with experts.

9 ACKNOWLEDGEMENTS
The work by Rocco Oliveto, Giovanni Rosa, and Simone Scalabrino
was supported by the European Union - NextGenerationEU through
the Italian Ministry of University and Research, Projects PRIN 2022
“QualAI: Continuous Quality Improvement of AI-based Systems”,
grant n. 2022B3BP5S, CUP: H53D23003510006. The work by Grego-
rio Robles was supported by the project “Dependencias en colec-
ciones complejas en módulos software” (PID2022-139551NB-I00),
funded by the Spanish Ministry of Science, Innovation and Univer-
sities.

REFERENCES
[1] 2015. hadolint: Dockerfile linter, validate inline bash, written in Haskell. https:

//github.com/hadolint/hadolint. [Online; accessed 2-Jun-2022].
[2] 2020. Contacting users for surveys. https://github.com/ghtorrent/ghtorrent.org/

blob/master/faq.md#contacting-users-for-surveys. [Online; accessed 14-July-
2023].

[3] 2020. Ethical issues to consider when conducting survey research. https://
www.qualtrics.com/blog/ethical-issues-for-online-surveys/. [Online; accessed
14-July-2023].

[4] 2022. The all_packages pip package. https://pypi.org/project/all-packages/.
[Online; accessed 28-July-2023].

[5] 2022. An introduction to the NPM package manager. https://nodejs.dev/en/
learn/an-introduction-to-the-npm-package-manager/. [Online; accessed 28-
July-2023].

[6] 2023. Best practices for writing Dockerfiles. https://docs.docker.com/develop/
develop-images/dockerfile_best-practices/. [Online; accessed 2-Jun-2022].

[7] 2023. CIS Docker benchmark. https://www.cisecurity.org/benchmark/docker.
[Online; accessed 14-July-2023].

[8] 2023. Docker Bench for Security. https://github.com/docker/docker-bench-
security. [Online; accessed 16-July-2023].

[9] 2023. Dockle - Container Image Linter for Security. https://github.com/
goodwithtech/dockle. [Online; accessed 16-July-2023].

[10] 2023. OWASP Docker security cheat sheet. https://cheatsheetseries.owasp.org/
cheatsheets/DockerSecurityCheatSheet.html. [Online; accessed 14-July-2023].

[11] 2023. Ruby gem stats. https://rubygems.org/stats. [Online; accessed 28-July-
2023].

[12] Quang-Cuong Bui, Malte Laukötter, and Riccardo Scandariato. 2023. Dock-
erCleaner: Automatic Repair of Security Smells in Dockerfiles. In 2023 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
To Appear.

[13] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the docker container ecosystem
on github. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 323–333.

[14] Kalvin Eng and Abram Hindle. 2021. Revisiting Dockerfiles in Open Source
Software Over Time. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 449–459.

[15] Arlene Fink. 2003. The survey handbook. sage.
[16] Martin Fowler and Kent Beck. 1997. Refactoring: Improving the design of existing

code. In 11th European Conference. Jyväskylä, Finland.
[17] Mubin Ul Haque, Leonardo Horn Iwaya, and M Ali Babar. 2020. Challenges in

docker development: A large-scale study using stack overflow. In Proceedings of
the 14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1–11.

[18] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2023. Automating depen-
dency updates in practice: An exploratory study on github dependabot. IEEE
Transactions on Software Engineering (2023).

[19] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. 2020. A
dataset of dockerfiles. In Proceedings of the 17th International Conference onMining
Software Repositories. 528–532.

[20] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. 2020. Learn-
ing from, understanding, and supporting devops artifacts for docker. In 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
38–49.

[21] Yu Huang, Denae Ford, and Thomas Zimmermann. 2021. Leaving my finger-
prints: Motivations and challenges of contributing to OSS for social good. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1020–1032.

[22] Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal opinion surveys.
Guide to advanced empirical software engineering (2008), 63–92.

[23] Emna Ksontini, Marouane Kessentini, Thiago do N Ferreira, and Foyzul Hassan.
2021. Refactorings and Technical Debt in Docker Projects: An Empirical Study. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 781–791.

[24] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2023. Understanding the
Usability of AI Programming Assistants. In 2024 IEEE/ACM 46rd International
Conference on Software Engineering (ICSE). IEEE, To appear.

[25] Jenny T Liang, Thomas Zimmermann, and Denae Ford. 2022. Understanding
skills for OSS communities on GitHub. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 170–182.

[26] Changyuan Lin, Sarah Nadi, and Hamzeh Khazaei. 2020. A large-scale data set
and an empirical study of docker images hosted on docker hub. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
371–381.

[27] Vittoria Nardone, Biruk Muse, Mouna Abidi, Foutse Khomh, and Massimiliano
Di Penta. 2023. Video game bad smells: What they are and how developers
perceive them. ACM Transactions on Software Engineering and Methodology 32, 4
(2023), 1–35.

[28] Diogo Pina, Carolyn Seaman, and Alfredo Goldman. 2022. Technical debt priori-
tization: a developer’s perspective. In Proceedings of the International Conference
on Technical Debt. 46–55.

[29] Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto. 2023.
What Quality Aspects Influence the Adoption of Docker Images? ACM Transac-
tions on Software Engineering and Methodology (2023).

[30] Giovanni Rosa, Simone Scalabrino, Gregorio Robles, and Rocco Oliveto. 2024.
Replication package. https://doi.org/10.6084/m9.figshare.23817024.v1.

[31] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and modeling programming experience. Empirical Software
Engineering 19 (2014), 1299–1334.

[32] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. 2013. Improving developer participation rates in surveys. In
2013 6th International workshop on cooperative and human aspects of software
engineering (CHASE). IEEE, 89–92.

[33] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[34] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano

Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015. When and why your
code starts to smell bad. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 403–414.

[35] Dirk Van Der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein Than Tun,
Marian Petre, Mark Levine, John Towse, and Awais Rashid. 2020. Schrödinger’s
security: opening the box on app developers’ security rationale. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 149–160.

[36] Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. 2020. Characterizing
the occurrence of dockerfile smells in open-source software: An empirical study.
IEEE Access 8 (2020), 34127–34139.

[37] Xiaoya Xia, Shengyu Zhao, Xinran Zhang, Zehua Lou, Wei Wang, and Fenglin Bi.
2023. Understanding the Archived Projects on GitHub. In 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
13–24.

[38] Yu Zhou, Weilin Zhan, Zi Li, Tingting Han, Taolue Chen, and Harald Gall.
2022. DRIVE: Dockerfile Rule Mining and Violation Detection. arXiv preprint
arXiv:2212.05648 (2022).

[39] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia,
Yang Feng, Zhenyu Chen, and Baowen Xu. 2019. Smart contract development:
Challenges and opportunities. IEEE Transactions on Software Engineering 47, 10
(2019), 2084–2106.

https://github.com/hadolint/hadolint
https://github.com/hadolint/hadolint
https://github.com/ghtorrent/ghtorrent.org/blob/master/faq.md#contacting-users-for-surveys
https://github.com/ghtorrent/ghtorrent.org/blob/master/faq.md#contacting-users-for-surveys
https://www.qualtrics.com/blog/ethical-issues-for-online-surveys/
https://www.qualtrics.com/blog/ethical-issues-for-online-surveys/
https://pypi.org/project/all-packages/
https://nodejs.dev/en/learn/an-introduction-to-the-npm-package-manager/
https://nodejs.dev/en/learn/an-introduction-to-the-npm-package-manager/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://www.cisecurity.org/benchmark/docker
https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security
https://github.com/goodwithtech/dockle
https://github.com/goodwithtech/dockle
https://cheatsheetseries.owasp.org/cheatsheets/Docker Security Cheat Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker Security Cheat Sheet.html
https://rubygems.org/stats
https://doi.org/10.6084/m9.figshare.23817024.v1

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Docker Basics
	2.2 Dockerfile Smells

	3 Study 1: Dockerfile Smells Affecting the Code Written by Experts
	3.1 Study Context
	3.2 Experimental Procedure
	3.3 Empirical Study Results

	4 Study 2: Experts' Point of View
	4.1 Context Selection
	4.2 Experimental Procedure
	4.3 Data Analysis
	4.4 Results

	5 Discussion
	6 Towards an Enhanced Catalog of Dockerfile Smells
	6.1 Collecting Recommendations from the Experts' Responses
	6.2 Ranking Dockerfile Smells

	7 Threats to validity
	8 Conclusion and Future Work
	9 Acknowledgements
	References

