Assessing and Improving the Quality of Docker
Artifacts

Giovanni Rosa
STAKE Lab
University of Molise
Pesche, Italy
giovanni.rosa@unimol.it

Abstract—Docker is the most diffused containerization tech-
nology adopted in the DevOps workflow. Docker allows shipping
applications in Docker images, along with their dependencies and
execution environment. A Docker image is created using a con-
figuration file called Dockerfile. The literature shows that quality
issues, such as violations of best practices (i.e., Dockerfile smells),
are diffused among Docker artifacts. Smells can negatively impact
the reliability, leading to building failures, poor performance, and
security issues. In addition, it is unclear to what extent developers
are aware of those quality issues and what quality aspects are
correlated with the adoption of a Docker image. As evaluated
in the literature, composing high-quality Dockerfiles and Docker
images is not a trivial task. In this research, we aim to propose
approaches and techniques to assess and improve the quality of
Dockerfiles and Docker images. First, starting from the resolution
of Dockerfile smells, we aim to improve the internal and then the
related external quality aspects that also affect the developers’
preference and the perceived quality when they adopt a Docker
image. Next, we want to employ that knowledge in the automated
generation of high-quality Dockerfiles and Docker images.

Index Terms—Docker, empirical software engineering, soft-
ware evolution, software quality

I. PROBLEM AND RESEARCH HYPOTHESIS

DevOps is a methodology commonly adopted in modern
companies: Development and operation teams work together
to provide a quick and automated release cycle of software
systems [[1]. Containerization technologies are essential in the
development workflow since they simplify the deployment
of applications and provide an isolated runtime environment,
along with all the dependencies and configurations required
for the execution.

Dockelﬂ is one of the most popular platforms used in the
DevOps workﬂowﬂ Since its release in 2013, Docker has
become the most talked-about containerization technology,
becoming the #1 “Most Loved” and “Most Wanted” platform
in the 2022 StackOverflow survey [2]]. A recent report on cloud
workload platforms states that 85% of the organizations will
adopt containerization in production environments by 2025,
starting from less than 30% observed in 2020 [3]].

Docker allows shipping applications with the required exe-
cution environment through lightweight virtual environments
(i.e., containers). A Dockerfile is a text file containing the
configuration for the execution environment required by a
specific application that generates a Docker image through

Simone Scalabrino
STAKE Lab
University of Molise
Pesche, Italy
simone.scalabrino @unimol.it

Rocco Oliveto
STAKE Lab
University of Molise
Pesche, Italy
rocco.oliveto @unimol. it

a build process. When writing Dockerfiles, existing Docker
images can be used as base images, i.e., a base environment on
which a new Docker image is built. To this end, a public online
repository called DockerHulﬂ allows developers to share their
images, so that others can build upon them.

DockerHub provides several sets of functionally-equivalent
environments (i.e., which provide the same software pack-
ages). For example, if developers need an environment based
on Apache Tomcat, they can choose as base image either
tomcat or bitnami/tomcat. Developers might find it nontrivial
to select the best base image for their application [4]] [S]] since
they not always understand the nonfunctional implications of
choosing a given image. The nonfunctional aspects can be
divided in externally observable features and configuration
features. The externally observable features are those that the
image user sees, such as the image size. On the other hand, the
configuration features are those aspects only perceivable by the
developers, mainly related to Dockerfiles and the build process
of the Docker image, such as the presence of Dockerfile
smells. Similar to code smells that occur in software systems
[6]], Dockerfile smells [[7] can negatively impact the overall
quality of the resulting Docker image.

While there are static analysis tools that help developers
verify the adherence to best practices in Dockerfiles, they may
not be sufficient to assess the absence of code smells [8]].
Several studies investigated the occurrence of those quality
issues in Docker applications [9]-[12], where hadolint [13] is
the reference tool to check for rule violations based on the
official Docker guidelines. In the same direction, other studies
evaluated the occurrence of issues affecting the security of
Docker images [14]]-[16]. Besides, a previous research reports
that developers perceive the creation of Dockerfiles as a time-
consuming activity [17]]. In summary, there is a need for tools
to support the development and release of those artifacts [7],
191, (111, [18]-[20].

To the best of our knowledge, no other studies perform
a comprehensive evaluation of the aforementioned externally
observable and configuration features in terms of (i) their

1. hhttps://www.docker.com/
2. hhttps://portworx.com/blog/2017-container-adoption-survey/
3. https://hub.docker.com/


https://www.docker.com/
https://portworx.com/blog/2017-container-adoption-survey/
https://hub.docker.com/

relationship and (ii) the relationship with the developers’
preferences when choosing a Docker image. Moreover, there
are no previous studies that propose fixing approaches and
tools in that direction, although developers perform refactoring
operations to improve Dockerfiles [21]. Some approaches
provide fixing recommendations, but for the automated repair
of broken Dockerfiles [22]] and fixing security vu]nerabilitiesﬂ
The lack of techniques to support the quality of Docker images
and Dockerfiles, and consequently the refactoring of smells,
is still an open challenge. Therefore, we want to focus our
research activity on the definition of new approaches and tools
to support the development and maintenance of Dockerfiles
and Docker images. Specifically, we want to investigate the
following research directions:

o Identification and improvement of internal quality
factors of Dockerfiles. We want to improve the quality
of Dockerfiles, proposing approaches to fix Dockerfile
smells. Despite there are studies evaluating those issues,
it is not clear which of them are relevant for developers.
Thus, we want to identify what Dockerfile smells are
relevant for developers and introduce approaches to fix
them.

« Identification of external (and internal) features that
are correlated with the quality perceived by develop-
ers for Docker images. We want to understand what
Dockerfile- and Docker image-related features explain
developers’ preferences. Specifically, we want to under-
stand (i) what externally observable features explain the
developers’ adoption and perceived quality, and (ii) what
configuration features influence the externally observable
features.

o Quality-aware generation of Dockerfiles that produce
Docker images intercepting users’ preferences. We
want to support the automated generation of Dockerfiles
starting from a natural language specification of the
requirements. Such an approach has to take into account
also the quality that the resulting Docker images will
obtain. This means that the generated Dockerfile, when
built, also produces a high-quality Docker image that
developers are most likely to adopt.

II. IMPROVEMENT OF THE QUALITY OF DOCKERFILES

Motivation. Several studies show that Dockerfile smells,
are widely diffused among open-source Dockerfiles [7], [9],
[11], [[19]. Hadolint [[13|] is the reference tool for detecting
Dockerfile smells that are commonly used in the literature as a
proxy for Dockerfile quality. Hadolint checks for a set of rules
on the AST representation of the input Dockerfile. The rules
are directly derived from the official writing guidelines [23]].
Each rule is identified by a unique identifier, composed of a
prefix (i.e., DL and SC, for Docker instruction and shell script,
respectively) and a number. An example is the rule DL302
which checks the usage of the instruction COPY instead of
ADD when copying files and folders. While the prevalence
of each smell is known [19], it is still unclear what are the
Dockerfile smells considered relevant by the developers, and

to what extent they are interested in solving them. Fixing
Dockerfile smells could reduce the risk of build failures [9]],
security issues [[16]], [24], and lower both build latency and the
size of the resulting image [25]. To fill this gap, we want to
conduct an empirical study to (i) investigate the survivability of
code smells, to understand what are the most relevant and how
developers fix them, and (ii) evaluate to what extent developers
are willing to accept fix recommendations for those smells.

Methodology. The experimental procedure of our study is
described as follows. As a study context, we plan to use the
dataset built by Eng et al. [19], which is the largest (~9.4M
instances) and most recent (i.e., up to 2020) dataset of Dock-
erfiles available in the literature. To evaluate the smell surviv-
ability, we will run the hadolint tool on different snapshots
of the same Dockerfile over time, to identify best practices
violations (i.e., smells). Considering the default configuration
of the hadolint tool, we will only consider rule violations
with a severity level of error and warning. Moreover, through
a manual evaluation, we will aim to understand if and how
developers performed the fixes. In this way, we can also
exclude false positives (e.g., the smell disappeared because
the commit removed the smelly lines). We will also look for
custom configurations of hadolint in the evaluated repositories,
to understand which smells are explicitly considered relevant
by developers.

For the second part of our study, we plan to implement
a tool to recommend fixes for Dockerfile smells, based on
the fixing examples included in the hadolint catalogﬂ The
tool will include fixes for the most occurring smells (i.e.,
those reported by Eng et al. [19]), excluding those that
are equivalent but less occurring (i.e., we retain DL3008,
discarding DL3013 and DL3018). While most of the smells
are trivial to fix, those related to missing version pinning are
more difficult and require a heuristic approach to be fixed.
In detail, DL3006 checks for the presence of the version tag
for base images in Dockerfiles, and DL3008 checks for the
missing version pinning for software packages installed via
apt—get. We plan to submit pull requests on GitHub to
evaluate the fix recommendations. We will monitor the status
of each pull request for 3 months and interact with developers
for additional information. Also, we will perform a quantitative
analysis of the status of the pull requests, and a qualitative
analysis of the developers’ reactions.

Expected outcome. The outcome will benefit both devel-
opers and researchers: Understanding what are the relevant
smells for developers will provide insights on where to focus
our research effort to improve the internal quality of Docker
artifacts.

Preliminary achievements. We have submitted a registered
report paper in which present the empirical study design. We
have already implemented a modular tool for fixing smells,
with the fixing procedures for some of the most common

4. https://snyk.io/docker/
5. hhttps://github.com/hadolint/hadolint/wiki/DL3020
6. https://github.com/hadolint/hadolint/wiki


https://snyk.io/docker/
https://github.com/hadolint/hadolint/wiki/DL3020
https://github.com/hadolint/hadolint/wiki

smells, namely DL3006 (image version tag), DL3008 (apt-get
version pinning), DL3009 (delete apt-get lists after installing
packages), DL3020 (use COPY instead of ADD for files and
folders), DL4000 (replace MAINTAINER with LABEL), and
DILA4006 (not using —o pipefail before RUN). Finally, we
verified if the fixed Dockerfile builds correctly to assess the
correctness of those fixes.

Limitations. Our study heavily depends on the hadolint
tool. The limitations of such a tool in detecting smells directly
impact our study. Another risk is that fixing Dockerfile smells
could not be a priority for developers and, thus, we could
find that no smell is relevant to them. However, as shown in
previous studies, there is a decreasing trend in the occurrence
of some smells [9]], [11]], [19]]. This suggests that developers
probably fix some smells.

ITII. IDENTIFICATION OF FEATURE CORRELATED WITH THE
DEVELOPERS’ PREFERENCE FOR DOCKER IMAGES

Motivation. There are many Docker images publicly avail-
able on DockerHub that can be used by developers, but the
selection of the correct image is a nontrivial task because of the
countless alternatives providing the same software applications
[5l. However, from Docker artifacts, it is possible to extract
configuration features, related to the Dockerfile and the build
process of the image (e.g., Dockerfile smells), and externally
observable features, related to the Docker image (e.g., image
size) that developers and Docker image users can observe.
Previous work proposed metrics to evaluate Docker images
through some of those features [7], [O, [11], [19], [21],
[25]. However, it is still unclear why developers prefer a
Docker image over another in terms of those features, and how
the configuration features are correlated with the externally
observable ones, thus affecting adoption and perceived quality.
The aim of our research work is to fill this gap. We want
to perform a comprehensive evaluation of the configuration
features and external features of Docker images including their
relation. The aim is to evaluate how externally observable
features are correlated with developers’ preferences and the
quality perception of Docker images, and what configuration
features are correlated with those external features.

Methodology. The goal of the empirical evaluation that we
want to conduct is two-fold. On one hand, we investigate
the scientific literature looking for all the features related to
quality, along with the metrics proposed to measure them. The
output of this process is a taxonomy of those features. On the
other hand, we want to empirically evaluate the correlation of
that features with the developers’ preference when adopting a
Docker image (i.e., how frequent they appear as base images
in Dockerfiles from open-source repositories) and the quality
that they perceive (i.e., how much they “appreciate” a Docker
image, measured as stargazers count from DockerHub). Most
of these features can be automatically extracted from Dock-
erfiles and Docker images, if provided by DockerHub. Those
that require a manual effort are excluded from the evaluation
(e.g., temporary file smell [8]]).

Expected outcome. The expected outcome will be (i) a
taxonomy of externally observable and configuration features,
and (ii) several models that explain how configuration fea-
tures determine each externally observable feature and how
externally observable features determine the perceived quality.
Researchers will obtain a reliable set of metrics to estimate
the quality of Docker artifacts, instead of measuring only the
number of smells, that also takes into account the quality
perceived by developers. Tool builders will know where to
put effort when they want to improve the quality of Docker
images and Dockerfiles. As the next steps, a quantitative
measure of Docker image and Dockerfile quality can be
proposed by combining configuration and external features.
The combination of their metrics can allow providing an
overall score of the quality level (i.e., quality badge). Such
a measure can be used in refactoring tools for Dockerfiles to
verify if the quality of the resulting Docker image is improved.
Also, the quality badge can be used as a discriminant factor
(i.e., qualitative measure) in recommending systems, or simply
it can be integrated with DockerHub as a meta-information to
show for Docker images.

Preliminary achievements. We conducted the whole em-
pirical evaluation. In detail, our empirical study answers two
different research questions, namely (i) how the externally ob-
servable features are correlated with the developers’ preference
for a Docker image, and (ii) how the configuration features are
correlated with the external ones. With the first one, we find
out the externally observable features correlated with the users’
choice when adopting an image. With the second one, we
identify what configuration features influence those externally
observable that are more relevant in terms of correlation.
In this way, we evaluate the configuration features that are
also indirectly correlated with the developers’ preferences.
The results show that developers are more likely to adopt
Docker images labeled as “official” on Docker Hub. They are
also better perceived, as shown in a previous study [S[]. The
image size and the presence of exposed secrets (e.g., exposed
login data) have a negative impact on developers’ preferences.
Also, the number of security vulnerabilities negatively impacts
the perceived quality. In terms of configuration features, the
SLOC, measured on Dockerfiles, have a positive and indirect
impact on developers’ preference because it directly impacts,
negatively, the number of vulnerabilities and the image size.

Limitations. As we rely on the scientific literature on
Docker that is relatively recent, there can be quality features
not identified yet. In the future, we plan to conduct a developer
survey to (i) validate the features considered in the presented
study and (ii) find out if there are additional features that are
relevant but not evaluated.

IV. QUALITY-AWARE GENERATION OF DOCKERFILES

Motivation. Creating a Dockerfile is not trivial, because
of the selection of the correct base image [4f, S]], or the
knowledge required to resolve all the software dependencies
[26]. In previous studies, researchers highlighted the need for
tools that support the creation of Dockerfiles as developers



considered it a time-consuming activity [[17]]. Previous studies
made the first steps in this direction. Hanamaya et al. [27]]
proposed Humpback, a tool that provides code completion
for Dockerfiles via language models, created using LSTM
neural networks. Horton et al. 28] proposed DockerizeMe, an
automated technique to generate entire Dockerfiles for Python
projects using a graph-based inference procedure. Ye et al.
[26] proposed DockerGen, an approach that automatically
containerizes software packages, generating a Dockerfile spec-
ification by simply providing the target OS (optional) and the
target software. DockerGen relies on knowledge graphs which
contains associations between packages, built on a dataset of
220k Dockerfiles, to generate the FROM instruction and the
RUN instructions with package installation commands. While
DockerGen is a milestone, it is still limited since it only
support package installation instructions, while Dockerfiles
might contain more complex instructions to install external
dependencies or to initialize the environment. Therefore, our
objective is to introduce a novel approach that automatically
generates Dockerfiles using Deep Learning and, specifically,
the T5 model, which has been proven effective in other code-
related tasks [29].

Methodology. Our approach takes as input a natural lan-
guage specification of the desired environment. Then, the
T5 model takes as input the specification and generates a
Dockerfile. To train such a model it is necessary to build
a large dataset of Dockerfiles associated with the respective
specification. We will rely on the largest dataset proposed
in literature (i.e., Eng et al. [12]), which contains ~9M
Dockerfiles. Given a Dockerfile, one of the biggest challenge
will be to infer the specification behind it so that we can train
the model. As shown in previous studies, developers usually
provide comment lines in Dockerfiles to explain what each
instruction does in Dockerfiles [20]]. Therefore, to infer the
specification based on which a Dockerfile was written (e.g.,
operating system, software packages, and package manager),
we will define a parser that extracts such information from
code comments along with source code. Consider, for example,
the code comment # Install Python, followed by a RUN
instruction that installs python2.7 and python—-pip: The
comment clearly indicates that python is the abstract software
requirement needed by the developer, while python?2.7 and
python-pip are the actual packages that the approach must
generate.

To validate our approach, we plan evaluate the generated
Dockerfiles in terms of (i) adherence to the specification, (ii)
similarity between the generated Dockerfile and the actual
Dockerfile from which the specification has been extracted,
and (iii) the functional equivalence of the resulting Docker
image. For the first point, we plan to measure the similarity
between the input specification and the one created from the
generated Dockerfile. For the second point, we will evaluate
the edit distance between the ASTs of the generated Dockerfile
and the source one used to parse the input specification. For the
last point, we will check whether the generated Dockerfile can
be successfully built and whether the composition similarity,

using the hash of the layers, between the resulting Docker
image and the one built from the source Dockerfile.

Expected outcome. We aim to propose an approach that
generates the entire Dockerfile starting from a natural language
specification, where developers indicate the requirements to
satisfy. The resulting tool can be integrated into the IDE,
providing the generated Dockerfile as a recommendation.
In that case, more than one capable Dockerfile could be
generated. A discriminant factor for the generated Dockerfiles
is the overall quality of the code, which can be measured in
terms of number of smells [9], or even better, considering
the features that influence the developers’ preference and the
quality perceived (see Section [[TI).

Limitations. The extraction of software requirements
strongly relies on the presence of comments in Dockerfiles.
Due to the size of the source dataset, removing Dockerfile
that does not contain comments is not an issue. Also, it is
possible that developers do not explicitly indicate some of
the requirements. Therefore, it is possible that the generated
Dockerfiles contain only a subset of the instructions of the
Dockerfiles used for training them.

V. FINAL REMARKS

The presence of quality issues related to Docker images
and Dockerfiles is a common problem for developers. Despite
scientific research on source code quality being widely inves-
tigated, the quality assessment of infrastructure as code (IaC)
is still in its infancy. Our work will lay the groundwork for
a research line that aims to provide those techniques to (i)
support developers in defining Dockerfiles and (ii) improve
the quality of Dockerfiles and Docker images. As a future
research agenda, we plan to develop further our research.

First, following up our research on the importance of
Dockerfile smells for developers, we plan to propose a com-
prehensive refactoring recommendation approach and tool for
the most common and relevant Dockerfile smells. Second, as
an extension of research on the impact of externally observable
and configuration features on developers’ preferences, we plan
to define a quality metric for Docker images based on those
features and to propose a quality badge. We plan to conduct a
developer survey to empirically validate the reliability of that
measure. Third, we will experiment with the use of different
quality-based filters (e.g., number of smells or the previously-
mentioned quality metric) to select the instances to use to train
our approach for the generation of Dockerfiles to understand
if it allows to achieve better results.

We believe that the results of our research will produce
concrete support for software developers, and give insights on
where to put the effort in successive research studies on this
topic.

REFERENCES
[11 L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of devops,’

in International conference on agile software development. Springer,
2015, pp. 212-217.



[2

[3

=

[4]

[6

=

[7

—

[8]

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

StackOveflow, “2022 developer survey,” https://survey.stackoverflow.
c0/2022/#section-most-loved-dreaded-and-wanted- other-tools, [Online;
accessed 7-Jul-2022].

Gartner, “2021 gartner market guide for cloud workload
protection platforms,” https://businessresources.bitdefender.com/
gartner-202 1-market- guide-for-cloud- workload- protection-platforms?
hs_preview=CPRimY YO-51790146713&hsLang=en-us, [Online;
accessed 27-Jun-2022].

A. Brogi, D. Neri, and J. Soldani, “Dockerfinder: multi-attribute search
of docker images,” in 2017 IEEE International Conference on Cloud
Engineering (IC2E). 1EEE, 2017, pp. 273-278.

M. H. Ibrahim, M. Sayagh, and A. E. Hassan, “Too many images on
dockerhub! how different are images for the same system?” Empirical
Software Engineering, vol. 25, no. 5, pp. 4250-4281, 2020.

P. Becker, M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999.

Y. Wu, Y. Zhang, T. Wang, and H. Wang, “Characterizing the occurrence
of dockerfile smells in open-source software: An empirical study,” IEEE
Access, vol. 8, pp. 34 127-34 139, 2020.

Z.Lu, J. Xu, Y. Wu, T. Wang, and T. Huang, “An empirical case study
on the temporary file smell in dockerfiles,” IEEE Access, vol. 7, pp.
63 650-63 659, 2019.

J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall, “An empirical analysis of the docker container ecosystem on
github,” in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 1EEE, 2017, pp. 323-333.

Y. Wu, Y. Zhang, T. Wang, and H. Wang, “An empirical study of build
failures in the docker context,” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 76-80.

C. Lin, S. Nadi, and H. Khazaei, “A large-scale data set and an
empirical study of docker images hosted on docker hub,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 371-381.

K. Eng and A. Hindle, “Replication package of “revisiting dockerfiles
in open source software over time”,” Jan 2021.

“hadolint: Dockerfile linter, validate inline bash, written in haskell,”
https://github.com/hadolint/hadolint, [Online; accessed 28-May-2022].

R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
docker hub,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017, pp. 269-280.

A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker ecosystem—
vulnerability analysis,” Computer Communications, vol. 122, pp. 30-43,
2018.

A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On
the relation between outdated docker containers, severity vulnerabilities,
and bugs,” in 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 1EEE, 2019, pp. 491—
501.

D. Reis, B. Piedade, F. F. Correia, J. P. Dias, and A. Aguiar, “Developing
docker and docker-compose specifications: A developers’ survey,” IEEE
Access, vol. 10, pp. 2318-2329, 2021.

J. Henkel, C. Bird, S. K. Lahiri, and T. Reps, “Learning from, under-
standing, and supporting devops artifacts for docker,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). 1EEE,
2020, pp. 38-49.

K. Eng and A. Hindle, “Revisiting dockerfiles in open source software
over time,” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). 1EEE, 2021, pp. 449-459.

H. Azuma, S. Matsumoto, Y. Kamei, and S. Kusumoto, “An empirical
study on self-admitted technical debt in dockerfiles,” Empirical Software
Engineering, vol. 27, no. 2, pp. 1-26, 2022.

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

E. Ksontini, M. Kessentini, T. d. N. Ferreira, and F. Hassan, “Refac-
torings and technical debt in docker projects: An empirical study,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2021, pp. 781-791.

J. Henkel, D. Silva, L. Teixeira, M. d’ Amorim, and T. Reps, “Shipwright:
A human-in-the-loop system for dockerfile repair,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1EEE,
2021, pp. 1148-1160.

“Best practices for writing dockerfiles,” https://docs.docker.com/develop/
develop-images/dockerfile_best-practices/, [Online; accessed 2-Jun-
2022].

J. Henkel, C. Bird, S. K. Lahiri, and T. Reps, “Learning from, under-
standing, and supporting devops artifacts for docker,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). 1EEE,
2020, pp. 38-49.

Y. Zhang, G. Yin, T. Wang, Y. Yu, and H. Wang, “An insight into the
impact of dockerfile evolutionary trajectories on quality and latency,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 1. 1EEE, 2018, pp. 138-143.

H. Ye, J. Zhou, W. Chen, J. Zhu, G. Wu, and J. Wei, “Dockergen: A
knowledge graph based approach for software containerization,” in 2021
IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC). 1IEEE, 2021, pp. 986-991.

K. Hanayama, S. Matsumoto, and S. Kusumoto, “Humpback: Code
completion system for dockerfiles based on language models,” in Proc.
Workshop on Natural Language Processing Advancements for Software
Engineering, 2020, pp. 1-4.

E. Horton and C. Parnin, “Dockerizeme: Automatic inference of envi-
ronment dependencies for python code snippets,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 1EEE,
2019, pp. 328-338.

A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1EEE,
2021, pp. 336-347.


https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-other-tools
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-other-tools
https://businessresources.bitdefender.com/gartner-2021-market-guide-for-cloud-workload-protection-platforms?hs_preview=CPRimYYO-51790146713&hsLang=en-us
https://businessresources.bitdefender.com/gartner-2021-market-guide-for-cloud-workload-protection-platforms?hs_preview=CPRimYYO-51790146713&hsLang=en-us
https://businessresources.bitdefender.com/gartner-2021-market-guide-for-cloud-workload-protection-platforms?hs_preview=CPRimYYO-51790146713&hsLang=en-us
https://github.com/hadolint/hadolint
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

	Problem and Research Hypothesis
	Improvement of the Quality of Dockerfiles
	Identification of Feature Correlated with the Developers' Preference for Docker Images
	Quality-aware Generation of Dockerfiles
	Final Remarks
	References

