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Abstract 

Congestive heart failure (CHF) is a chronic heart disease 

that causes debilitating symptoms and leads to higher 

mortality and morbidity. In this paper, we present 

HARPER, a novel automatic detector of CHF episodes  

able at distinguishing between Normal Sinus Rhythm 

(NSR), CHF and no-CHF. The main advantages of 

HARPER are its reliability and its capability of providing 

an early diagnosis. Indeed, the method is based on the 

evaluation of real-time features and on the observation of 

a brief segment of ECG signal. HARPER is an 

independent tool with the meaning that it does not need 

any ECG annotatotion or segmentation algorithms to 

provide a detection. The approach was submitted to a 

complete experimentation, by involving both the intra- 

and inter-patient validation schemes. The results are 

comparable to the state-of-art methods therefore 

highlighting the suitability of HARPER to be used in 

modern IoMT systems as a multi-class, fast and highly 

accurate detector of CHF. We also provide guidelines for 

the configuration of a temporal window to be used in 

automatic detection of CHF episodes. 

Keywords:  

CHF, Machine Learning, DSS, Wearable, IoMT 

1 Introduction 

We are living in the era of wearable devices, which are 

important components of human health for the prevention 

of diseases or pathological conditions. These devices 

have become so widespread that they play an important 

role in healthcare and tele-medicine systems [1]. The key 

aim of incorporating technology into healthcare systems 

is to increase the quality and usability of medical devices 

and facilities by providing improved interfacing 

capability between patients and caregivers [2, 3]. In 

remote healthcare monitoring, the Internet of Medical 

Things (IoMT) played a critical role. The Internet of 

Medical Things is primarily used to collect remote data 

for patients via wearable sensors/devices and store it in 

cloud databases. These data are made available to 

caregivers for real-time review and implementation but 

also to specific systems in order to provide automatic 

analysis [4, 5]. A recent example of tele-medicine system 

is ATTICUS [6, 7]. ATTICUS provides a bustier 

wearable [8] able to acquire at least 6-lead continuous 

electrocardiogram (ECG) signal and other vital 

parameters. A Decision Support System (DSS) [7] - 

structured as a distributed AI software - is in charge of 

providing the early diagnosis of several pathological 

conditions, which could possibly require immediate 

attention by doctors.  

One of such conditions is Congestive Heart Failure 

(CHF), a common pathophysiological condition 

common, with around 26 million adults diagnosed with 

the disease worldwide in 2014  [9].  

Thus, much effort was undertaken by the scientific 

community to the aim at automatically identify CHF. 

Most of the works propose a detector of CHF that 

provides a binary classification of a signal in CHF and 

Normal Sinus Rhythm (NSR) [10-13]. A minor part of the 

scientific community has modeled the CHF detection 

problem as a multi-class prediction problem to avoid that 

pathological signals different from CHF are erroneously 

classified as CHF [14]; in such cases, three classes are 

typically used: CHF, NSR, and no-CHF (i.e., pathology 

different from CHF). In both cases, a variety of temporal 

observations were adopted. For example, Xiong et. al. 

[13] experimented the use of an ECG segment with a 

fixed length in terms of samples, while Porumb et. al. [12] 

relied on observations at heartbeat level. The main 

drawback of such approaches is that they  provide only 

binary classifications [10-13] or that they are dependent 

on other safety-critical algorithms to obtain the ECG 

segmentation. 

In this paper, we introduce HARPER (detector of 

congestive Heart fAiluRe ePisodes for mEdical suppoRt), 

an automatic method to detect CHF in a single-lead digital 

ECG. HARPER is a near real-time approach capable at 

providing a multi-class identification of a given 

windowed ECG signal in: CHF, NSR, and no-CHF (i.e., 

pathological rhythm, but different from CHF).  

The main contributions of this paper are the followings:  

• we introduce HARPER, a reliable and 

indipendent detector because it is capable of 

providing a multi-class identification (instead of 

a binary one) and it is not dependent on other 

algorithms (e.g. a R peak detector) for the ECG 



segmentation because it involves a fixed length 

segmentation. 

• due to the fact that CHF is a chronic condition [5], 

we conducted a complete study to assess the 

duration of the best temporal window in which to 

observe CHF. This was done within two 

scenarios: (i) inter-patient intended as the case 

when no personal data is available for a new 

subject to be monitored in ATTICUS  and (ii) 

intra-patients when personal data are available in 

the training set. 

The rest of the paper is structured as follows: Section 2 

describes the planning of our study, highlighting the 

workflow of  HARPER and the datasets used while 

Section 3 describes the experimental procedure and the 

validation schemes. In section 4 “Results” are described 

the results obtained in all the experimental settings and 

finally section 5 concludes the paper by reporting an 

analysis on the various outcomes and highlighting the 

future works. 

2 Methods 

In this section, we present the high-level worflow of 

HARPER. Then we describe the perfomed ECG 

processing, and the context of this study. Moreover, we 

describe the experimental procedure and the validation 

schemes. 

2.1 HARPER Workflow 

The high-level workflow of HARPER is described as 

follows. We consider as w the length of an observation 

window (in seconds). HARPER takes as input the ECG 

signal from the patient, having a length greater than or 

equal to w · f, where f is the sampling frequency of the 

ECG signal. Next, the ECG signal is divided into several 

segments, based on the segmentation window. On each 

segment we perform a feature extraction step. The 

extracted features are submitted to a trained machine 

learning model which performs the signal classification. 

In this way, as output of the last step, HARPER provides 

a label for the most probable classification among NSR, 

CHF and no-CHF. 

2.2 ECG Signal Processing and Features Extraction 

The signal processing performed on the ECG starts with 

the detrend operation, where the signal mean is computed 

and subtracted from the input signal. Then the following 

literature features [15] are extracted:  

• Energy of Maximal Overlap Discrete Wavelet 

Transform (using db2 as Daubechies wavelet 

transform and 15 levels of decomposition),  

•  Autoregressive Model of order 16. We 

computed the AR model coefficients using the 

Yule-Walker estimator,  

 
1 https://github.com/mathworks/physionet_ECG_data/ 

• Multifractal Wavelet Leader  (using db3 as 

wavelet transform); 

• Fast Fourier Transform. 

2.3 Study Design 

The final goal of this study  to assess the suitability of 

HARPER, as a detector of Congestive Heart Failure.  

To achieve this, we designed two research questions: 

• RQ1: What is the optimal value of the w 

parameter? With the first research question, we 

aim to tune the w parameter to understand how 

many seconds of observation are necessary to 

perform the best prediction; 

• RQ2: What is the classification effectiveness of 

HARPER? With this second research question, 

we want to evaluate the accuracy of HARPER in 

the detection of CHF episodes. 

We also want to evaluate HARPER in terms of different 

validation techniques such as intra-patient and inter-

patient (where the data of a subject is not or partially 

considered in the training of the model, respectively) 

strategies. 

2.4 Context of the Study 

In our study we used a dataset of 162 ECG recordings 

extracted from PhysioNet database [16], provided by 

MathWorks1. In the final dataset, there are 36 recording 

of subjects with NSR, 96 with no-CHF anomalous 

episodes (i.e., arrhythmia) and 30 recordings from 

subjects affected by CHF. The reason behind the use of 

this dataset is that (i) it is composed of signals from 

different datasets, providing a more heterogenous set of 

ECG recordings and (ii) it contains not only CHF 

recordings but also those no-CHF. In this way HARPER 

can distinguish abnormal recordings with CHF episodes 

from those that are abnormal but contains no-CHF heart 

diseases. 

2.4.1 Baseline approach 

We selected a recent approach from the literature, i.e. the 

approach proposed by Yang et. al [14] as reference 

baseline for the evaluation of HARPER. Beyond the high 

accuracy, we chose this work because the authors perform 

a three-class identification of ECG in: NSR, CHF and 

Coronary Artery Disease (CAD). Their approach 

combines an ECG fragment alignment (EFA) with 

principal component analysis (PCA) and a convolutional 

network (EFAP-Net) to ensure heartbeats consistency 

between subjects eliminating heart rate differences. 

Finally, they use a linear SVM as classifier. They also 

succesfully applied intra-patient and inter-patient 

validation techniques.  

The main drawback of such an approach is that it involves 

the ECG segmentation at heartbeat level, which could 

lead to a less suitability in real-time scenarios because of 

the high computational cost of a robust R peak detector. 

Due to the consideration that CHF is a chronic condition, 



in HARPER, we tried to avoid any dependance on external 

algorithms and we only focused on a fixed length 

observation of the ECG. Indeed, in the context of 

ATTICUS, we needed to design a highly reliable near 

real-time approach of CHF episodes in two scenarios: 

when personal data are available in the monitoring and 

when a new ATTICUS user has to be continuously 

monitored. 

3 Experimental Procedure 

 In the next sub-sections we describe the steps of our 

experimental procedure. 

 RQ1: ECG Segmentation 

As we want to evaluate the best ECG temporal window  

to provide an accurate multi-class detection (therefore a 

better observation of CHF episodes), we need to (i) split 

the ECG recordings in segments and (ii) assess what is the 

best classifier that it is possible to define on the top of that 

data. First, we defined a set of possible durations of time 

windows. Furthermore, we performed the ECG 

segmentation based on the defined temporal windows and 

the extraction of the previously described features. We 

selected a set of time windows ranging from 5 to 120 

seconds.  

Next, for the intra-patients scenario, we built different 

machine learning pipelines, testing out different models 

in combination with pre-processing and sampling 

techniques. In this way, we aimed at assessing which is 

the best temporal window and which could be the best 

model to use with for the specific intra-patients scenario. 

For example, for RandomForest we only applied a min-

max scaling, but for SVM we applied the standardization. 

We also evaluated the impact of data balancing 

techniques, such as SMOTE [17]. In detail, we first 

removed higly-correlated features, removing those 

having a Pearson correlation coefficient r greater than 

0.95. Then, we applied a tree-based estimator feature 

selection technique, where the impurity-based feature 

importance is computed. In this way, we discarded the 

irrelevant features according to their importance. The 

final step of our classification pipeline consisted in a 

combination of random split of training and test set (i.e. 

80-20), data sampling (i.e. SMOTE), data pre-processing 

(i.e. scaling, standardization) and a classification 

algorithm.  

Finally, we opted for using the best model obtained from 

the intra-patients scenario to assess the best window 

duration also in the inter-patients scenario. The 

preprocesssing scheme used was the same.   

We evaluated the classification performance using 

widely-used metrics for classification tasks, namely 

Sensitivity, Specificity, Precision, F1 score. 

 

Table 2 - Dataset overview after ECG segmentation  

 

RQ2: HARPER Classification and Validation 

Taking into account the results of RQ1, to assess the 

classification performance of HARPER, we conducted its 

validation considering the best ECG time window 

combined with the best performing classification 

pipeline. Moreover, we compared our approach with the 

selected baseline [14] to assess if HARPER has 

comparable performance to a state-of-the-art approach for 

CHF detection.  

As we used the random split technique to split the dataset 

in train e test set, we decided to perform 1000 executions 

to reduce a possible bias due to the randomness.  

On the other hand, for the intra-patient protocol, we 

performed n executions where n corresponds to the 

number of patients in our dataset (i.e. 162). For each 

execution, a specific patient is selected as test set and the 

remaining are used as training set. In this way the model 

observes a brand-new set of ECG recordings  not 

evaluated before. We used the same classification metrics 

used in RQ1 (i.e. Sensitivity, Specificity, Precision, F1 

score.) taking the average value across all patients. 

Se % Sp % Pre % f1 % Se % Sp % Pre % f1 % Se % Sp % Pre % f1 % Se % Sp % Pre % f1 %

RandomForestClassifier SMOTE MinMaxScaler 97.73 98.76 97.76 97.74 98.67 99.35 98.69 98.67 98.46 99.39 98.49 98.46 98.64 99.51 98.67 98.65

RandomForestClassifier - - 97.94 98.08 97.95 97.94 98.85 99.07 98.85 98.85 99.18 99.24 99.19 99.18 99.01 98.98 99.01 99.01

SVM_Classifier SMOTE StandardScaler 97.43 98.69 97.48 97.44 97.76 98.82 97.80 97.77 97.91 99.35 97.99 97.92 97.90 98.85 97.94 97.91

SVM_Classifier - StandardScaler 97.43 98.21 97.44 97.43 98.25 98.68 98.25 98.25 97.91 98.71 97.93 97.91 98.15 98.45 98.15 98.15

KNeighborsClassifier SMOTE - 49.74 71.66 55.50 51.39 57.11 76.33 63.04 58.86 51.81 73.89 57.85 53.50 54.20 73.41 59.33 55.64

KNeighborsClassifier - - 58.79 57.82 55.30 55.68 63.04 61.83 60.30 60.88 60.25 60.90 57.35 57.81 61.85 61.80 59.87 60.01

LogisticRegressionClassifier - StandardScaler 94.49 95.44 94.49 94.49 96.85 97.54 96.87 96.86 96.82 97.68 96.84 96.83 97.16 98.04 97.19 97.17

Se % Sp % Pre % f1 % Se % Sp % Pre % f1 % Se % Sp % Pre % f1 % Se % Sp % Pre % f1 %

RandomForestClassifier SMOTE MinMaxScaler 99.54 99.70 99.54 99.54 99.27 99.36 99.28 99.27 98.08 98.40 98.09 98.07 96.15 98.88 96.40 96.19

RandomForestClassifier - - 99.69 99.55 99.69 99.69 98.73 98.28 98.74 98.73 99.23 99.26 99.23 99.23 96.92 98.45 96.93 96.92

SVM_Classifier SMOTE StandardScaler 97.38 98.03 97.39 97.38 98.91 99.03 98.91 98.91 96.92 98.17 97.00 96.94 95.38 96.73 95.38 95.38

SVM_Classifier - StandardScaler 97.99 98.37 98.00 97.99 98.37 98.19 98.38 98.35 98.08 98.44 98.10 98.09 93.85 94.94 93.86 93.83

KNeighborsClassifier SMOTE - 50.93 73.08 57.02 52.69 46.46 68.32 52.63 48.18 46.54 67.72 54.51 48.71 44.62 73.56 51.71 46.51

KNeighborsClassifier - - 60.34 60.55 57.43 57.92 56.08 52.83 51.02 52.31 58.46 55.84 56.17 56.89 54.62 64.81 51.29 52.21

LogisticRegressionClassifier - StandardScaler 96.91 97.53 96.92 96.91 97.82 97.83 97.84 97.82 97.69 98.30 97.74 97.69 97.69 99.42 97.93 97.74

30s 120s
Model Sampling Preprocess

25s 60s

Model Sampling
10s 15s 20s

Preprocess
5s

Table 1 - Evaluation of the best temporal ECG window and classifiers in the intra-patients scenario. 



4 Results 

In the next sub-section we describe the results achieved to 

answer our research questions. 

RQ1: ECG Segmentation 

In Table 1 the results of our experiment in the intra-

patients scenario are reported. For each time window, the 

percentage scores are displayed related to the 

classification metrics corresponding to each classification 

pipeline, where we described the used model and the data 

preprocessing techniques.  

The main outcome of this experimentation is that an 

observation of 25 seconds allowed to obtain the best 

overall metrics with a pipeline composed only of a 

RandomForest model. In this case, the results exceeded 

0.99 on all the evaluated classification metrics. In Figure 

1, the boxplots of the classification metrics obtained by 

experimenting each time window are shown. In 

particular, from this distribution of data it is also possible 

to derive how the time observation with the highest 

median of the classification performances  is the 25 

seconds window. However, in terms of robustness the 20 

and 25 time windows are the best, because even the 

outliers are approximately above 0.96. On the contrary, 

this happens for the 120s time window. For example, the 

Specificity score is below 0.88 considering the outliers 

below the first quartile. 

The results of the intra-patient valildation protocol 

showed that in this specific condition the best time 

window is defined by 60 s and not 25 s as previously 

obtained in the other scenario (93.13 vs 91.64 in terms of 

F1 score).  

The reason behind this could be that in the case of a 

patient that is never examined before, a larger time 

window (i.e. a longer ECG buffering) is needed to achieve 

an accurate classification. 

RQ2: HARPER Classification and Validation 

Taking into account the results from RQ1, we used as 

reference time window 25 seconds and the raw 

RandomForest as reference classification pipeline. We 

also executed the validation on the other temporal 

windows to compare and verify if the previously selected 

time window is the best also in a inter-patient scenario. In 

Table 3 Table 3 the average percentage classification 

metrics of the validation protocol are reported, for the 

inter-patients scheme. We achieved a score sligthly worse 

than the one achieved in RQ1 (where we reported the 

results of a single execution) but we aimed at preserve the 

repeatibility of our experiment by avoiding the 

contribution of randomness. 

We compared our two validation results with the baseline 

approach where we only considered the NSR and CHF 

classes from the multi-class detection, because one of our 

classes (ARR) differs from the one proposed by Yang et 

al. [14] (CAD). In Table 4 we reported our results 

compared to the baseline approach. On the left side, there 

are the results of the inter-patient validation where the 

baseline approach slightly outperforms HARPER for a 

few percentage points. This can due to their perfectly  

 
Table 3 – Classification metrics of HARPER using a 

window of 25 seconds and inter-patient validation proto-

col. 

  

balanced dataset. For the intra-patient validation (right 

side), in some cases HARPER outperforms the baseline, 

mainly on NSR class. For the CHF class, we have a better 

Sensitivity and Specificity values but much lower values 

of Precision and F1-score. This means that our approach 

have more false positives than the baseline. 

 

5 Conclusions & Future Works 

The results of this work clearly highlight that a longer (60 

s) observation of the ECG is needed to best detect CHF 

episodes when monitoring in real-time a new user of an 

IoMT system. Such a duration can be reduced (25 s) once 

enough data points are made available to the ML pipeline.  

Table 4 - Classification performance compared with the 

baseline approach [14] of intra-patient validation (left) 

and inter-patient validation (right).  

Figure 1 - Metrics distribution for the intra-patient scheme. 

Metric
Our 

approach

Yang et. 

al  [25]
Delta Metric

Our 

approach

Yang et. 

al  [25]
Delta

Se (%) 98.74 99.89 -1.15 Se (%) 98.95 96.57 + 2.38

Sp (%) 98.3 99.86 -1.56 Sp (%) 99.60 98.79 + 0.81

Pre (%) 99.23 99.82 -0.59 Pre (%) 98.61 92.44 + 6.17

f1 (%) 98.98 99.93 -0.95 f1 (%) 98.78 99.26 -0.48

Metric
Our 

approach

Yang et. 

al  [25]
Delta Metric

Our 

approach

Yang et. 

al  [25]
Delta

Se (%) 97.63 99.87 -2.24 Se (%) 91.94 89.61 + 2.33

Sp (%) 99.67 99.81 -0.14 Sp (%) 93.78 85.78 + 8.00

Pre (%) 98.55 99.82 -1.27 Pre (%) 71.25 83.85 -12.60

f1 (%) 98.08 99.90 -1.82 f1 (%) 80.28 92.65 -12.37

Class CHF

Class NSRClass NSR

Class CHF



HARPER is highly accurate and it showed a great 

potential to be embedded in scenarios of continuous 

monitoring due to its high accuracy in the detection and 

to the technological independence: indeed, no other 

algorithms are needed to obtain the ECG segmentation. 

HARPER can be considered reliable because it concerns 

also the classification of pathological rhythm different 

from CHF. 

As part of our future agenda, we plan to validate the 

accuracy of HARPER (i) when common ECG noises 

(electrode movement or motion artefact) are spread in the 

signal, and (ii) within the signals directly acquired by the 

ATTICUS smart vest. 
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