
Noname manuscript No.
(will be inserted by the editor)

Mining and Measuring the Impact of Change
Patterns for Improving the Size and Build Time of
Docker Images

Giovanni Rosa · Emanuela Guglielmi ·
Mattia Iannone · Simone Scalabrino ·
Rocco Oliveto

Received: date / Accepted: date

Abstract Software containerization, for which Docker is the reference tool,1

is widely adopted in modern software engineering. The performance of the2

Docker build process in terms of image size and build time is crucial to devel-3

opers. While previous work and Docker itself provide best practices to keep4

the images small and fast to build, we conjecture that developers might adopt5

undocumented practices. In this paper, we present an empirical study in which6

we aim (i) to mine the practices adopted by developers for improving the im-7

age size and build time, and (ii) to measure the impact of such practices. As8

for the mining study, we manually analyzed a total of 1,026 commits from9

open-source projects in which developers declared they wanted to improve the10

image size or build time. We categorize such changes and define a taxonomy11

of 46 optimization strategies, including practices such as removing temporary12

files (e.g., package manager cache) or improving the structure of the Dockerfile13

(e.g., using multi-stage build). Such a taxonomy reveals some previously un-14

documented techniques, providing valuable insights for developers. As for the15

measurement study, we empirically assess the actual improvement in image16

size and build time (over 20 builds) of the most frequent change patterns ob-17

served in the mining study. Our results show that changing the base image18

has the best results in terms of image size, but it negatively affects the build19

time. On the other hand, we observed no change pattern that significantly20

reduces the build time. Our study provides interesting insights for both tool21

makers who want to support practitioners in improving Dockerfile build per-22

formance and practitioners themselves, who can better decide how to optimize23

their Dockerfiles.24

Keywords dockerfile smells · empirical software engineering · software25

evolution26

G. Rosa · E. Guglielmi · M. Iannone · S. Scalabrino, R. Oliveto
University of Molise, Italy
E-mail: {giovanni.rosa, emanuela.guglielmi, simone.scalabrino, rocco.oliveto}@unimol.it,
m.iannone2@studenti.unimol.it

2 Giovanni Rosa et al.

1 Introduction1

Containerization technologies are widely adopted in the modern era of soft-2

ware engineering, allowing to speed up the deployment and release process3

for application context [4]. Docker is the leading platform for containerizing4

software application, resulting the most used and desidered tool in the re-5

cent StackOverflow survey 12. Docker allows to easily wrap applications along6

with the required dependencies for their execution, ensuring to share them by7

different systems and execution environments.8

Having small Docker images, in terms of storage size, is desirable because9

it allows using less resources on the deployment server and, thus, reduce the10

deployment costs. At the same time, reducing the time needed to build an im-11

age from the source Dockerfile is important in a scenario in which developers12

frequently deploy their product (e.g., in a DevOps environment). Open-source13

tools are available for improving the performance of Docker artifacts, specifi-14

cally to reduce the size of containers.3 However, such tools work directly on the15

Docker images and they need to be executed every time a new build is com-16

pleted. Ideally, the source Dockerfile should be reasonably optimized already17

to avoid such an overhead.18

The literature confirms that both such performance-related aspects are im-19

portant to developers. Rosa et al. [21] showed that developers prefer smaller20

images. Besides, Zhang et al. [28] report that slow build time in CI/CD21

pipelines (which includes the build of Dockerfiles) lead to poorer develop-22

ers’ work efficiency. Ksontini et al. [14] found that ∼19.7% of the Dockerfile23

refactoring operations performed by developers are aimed at improving such24

aspects. While such a study provides valuable insights on the practices used25

by developers to improve both the build time and the size of Docker images,26

its goal was more generic (i.e., it was aimed at studying all the refactoring op-27

erations performed by developers). Thus, the authors ended up analyzing only28

38 commits related to performance improvement. Besides, we do not know the29

impact of refactoring operations made by developers. We conjecture that such30

a previous work only scratched the surface of what developers do to address31

performance issues in Docker images.32

In this paper, we present an extensive empirical study in which we aim33

at understanding (i) what developers do to improve the image size and build34

time of Docker images, and (ii) what impact such operations have in practice.35

Starting from the state-of-the-art dataset proposed by Eng et al. [8], contain-36

ing commits aimed at modifying Dockerfiles in GitHub, we run two queries to37

extract the changes that are aimed at improving either the build time or the38

image size. Such queries were defined by selecting relevant keywords from the39

dictionary of unique words in the commit messages we considered. We manu-40

ally analyzed a significant sample of 905 commits, with the aim of manually41

1 https://survey.stackoverflow.co/2023/
2 https://survey.stackoverflow.co/2024/
3 https://github.com/slimtoolkit/slim

https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2024/
https://github.com/slimtoolkit/slim

Title Suppressed Due to Excessive Length 3

tagging them with a high-level description of the operations made by devel-1

opers. As a result, we selected a total of 905 commits (1,230 tags). Next, we2

defined a taxonomy of 46 refactoring operations made by Dockerfile develop-3

ers to reduce the image size and build time of the resulting Docker images.4

We found that most of the changes are aimed at de-bloating the image (49%5

of the commits analyzed) by removing unnecessary files and, thus, reducing6

the image size. Besides, developers tend to modify the Dockerfile architecture7

(36% of the changes) and to foster the use of caching mechanisms (18% of the8

changes) to reduce the build time. As a second contribution, we conducted9

an experiment to measure the impact of the most frequent change practices10

we found in the first part of the study on both image size and build time.11

To do this, we first selected the commits for which the build of the Dockerfile12

before the change succeeded. Then, for each selected commit, we considered13

the difference between the Dockerfile after the performance-improving change14

and manually extracted several alternative versions of the Dockerfile, each of15

which implemented exactly a performance improvement practice. For exam-16

ple, if a commit changed both the base image and joined RUN instructions, we17

extracted two improved versions: one in which we only changed the base image18

and one with the previous base image but with RUN instructions joined. Then,19

we built both the previous version of the Dockerfile and each new improved20

version to measure build time and image size. We repeated each build 20 times21

to account for the variability of build time. Finally, we analyzed the improve-22

ments (both in terms of build time and image size) obtained with each fixing23

pattern. We found that changing the base image variant has the most substan-24

tial impact in reducing the image size (62% reduction, on average). Changing25

the base image altogether, instead, has a more limited reduction on image size26

(15% reduction, on average). Other positive practices include enabling multi-27

stage builds and joining multiple RUN instructions, which effectively reduce the28

number of image layers and help shrink the image size, on average, by 62%29

and 24%, respectively. As for the build time, the results are more nuanced.30

While some practices, such as joining RUN instructions, showed positive effects31

in some cases, others did not lead to consistent improvements. No category32

allowed us to obtain statistically significant improvements in terms of build33

time. Instead, changing the base image variant results in significantly higher34

build time (+131%).35

Our results might be useful to both developers and researchers. We provide36

developers with a catalog of changes they might apply to reduce the image size37

and build time of Docker images. Researchers might use our results to devise38

approaches to support developers in the task of refactoring Docker images39

for performance improvement (e.g., by automatically suggesting optimal base40

images).41

The rest of our paper is organized as follows. In Section 2, we compre-42

hensively review the relevant background literature. Section 3 presents the43

methodology and details of our empirical study, including the data collec-44

tion process, experimental design, and techniques applied. In Section 4 and45

Section 5 we report and discuss the results, followed by threats to validity46

4 Giovanni Rosa et al.

(a) Dockerfile

copy package.json

install dependencies

copy project files

set working directory

pull node:alpine image

From Cache

From Cache

From Cache

Cache Invalidated From Cache

From Cache

From Cache

Cache Invalidated

copy package.json

install dependencies

copy project files

set working directory

pull node:alpine image1

2

3

4

5

1

2

3

4

5

Scenario A Scenario B

(b) Workflow of Dockerfile build when the dependency files change (Scenario A) and the
application files change (Scenario B).

Fig. 1: Example of Dockerfile using node.js (top), and an example of how the
layer caching works (bottom).

in Section 6. Finally, in Section 7 we conclude the paper and provide future1

directions.2

2 Background and Related Work3

Docker images are the result of the building process of Dockerfiles. Each Dock-4

erfile starts with a base image, then follows a series of instructions defining5

requirements and configurations. The build process converts each Docker in-6

struction into a binary layer in consecutive order. This means that images are7

composed of a series of stacked individual layers, each one dependent on the8

previous one. To optimize the re-build process of Dockerfiles, only the changed9

Title Suppressed Due to Excessive Length 5

layers are rebuilt while those already built, if not changed, are reused reducing1

the total build time required. On the other hand, if a layer is changed, all the2

following layers will be invalidated and rebuilt due to the fact that each layer3

depends on the previous one. Cache invalidation occurs for all the instructions4

modifying the filesystem (e.g., RUN, COPY, ADD) or changing the execution en-5

vironment (e.g., ENV, ARG, ENTRYPOINT). For example, if a COPY instruction6

is changed, all the layers that depend on it will be invalidated and rebuilt.7

This is a common scenario when the source code of the application changes.8

Fig. 1 reports a detail of the layer caching system. The example reports a9

Dockerfile using node.js. Thus, when the dependencies of package.json file10

are changed, the image will be rebuilt from that point (Scenario A). Instead, if11

only the source of the application is changed, only the cache of the final layer12

is invalidated and then rebuilt (Scenario B).13

The number of layers can directly impact the final size of the Docker image.14

In some cases, a large size could be a symptom of bad quality [21]. The most15

widespread instrument used for identifying quality issues in Docker artifacts16

are Dockerfile smells [26]. Dockerfile smells are violations of best writing prac-17

tices in Dockerfiles that can negatively impact the resulting images in terms of18

size increase, security, and reliability issues [6]. Several studies investigated the19

occurrences over time of smells [8,16]. Even if smells are widely diffused, there20

is a declining trend in their occurrence and also in the size of images. This as-21

pect is also reported as technical debts by developers [3], specifically in terms22

of files and dependencies that should be removed. This means that developers23

pay attention to the image size and wasteful resources in Dockerfiles.24

Previous works proposed approaches to improve the quality of Docker-25

files [5,11], and, specifically, to fix smells [7,22]. It has been proved that fixing26

smells can reduce the space wastage of containers [7]. Another important as-27

pect, still regarding performance and related to poor design choices, is the build28

time of Docker images. In fact, previous studies reported that developers keep29

attention to this aspect as they are led to change their CI/CD pipelines due30

to the slow build speed of the embedded Docker images [28]. However, none31

of these studies performed an extensive investigation on what are the changes32

that can help to improve the build time and image size of Docker images.33

The only exception is the study conducted by Konsontini et al. [14]. They34

investigated a sample of refactoring operations performed in Dockerfiles and35

docker-compose files, which define multi-container applications and are com-36

monly used to orchestrate multiple services during development and deploy-37

ment. In particular, they manually investigated a total of 193 commits where38

only 28 of them regard image size, while 10 the build time. Therefore, our study39

aims to perform a more in-depth analysis of those two particular aspects.40

Other approaches have been presented specifically for container debloat-41

ing. Examples are the works of Skourtis et al. [23] and Jiang et al. [12] that42

work directly on containers to reduce layer redundancy and space wastage. In43

addition, Rastogi et al. [18, 19] proposed techniques leveraging dynamic anal-44

ysis to identify only the necessary resources of a given container in order to45

allow removing the unnecessary ones. We believe that working at Dockerfile-46

6 Giovanni Rosa et al.

level allows developers to have more control over the resulting Docker images,1

avoiding unwanted side effects when working directly on the final containers.2

It is worth saying that our study aims to quantitatively measure the impact3

of the changes applied to improve performance, and thus our results provide4

a set of recommendations of which changes developers should apply in order5

to make those improvements.6

3 Empirical Study Design7

The goal of our study is to understand how Docker developers change Dock-8

erfiles to improve the build time and size of the resulting Docker images and9

how such changes impact those quality aspects. The perspective is of both re-10

searchers and developers interested in improving those aspects when writing11

Dockerfiles. The context consists of 905 commits coming from 977 open-source12

repositories.13

In detail, the study addresses the following research questions:14

RQ1:Which changes do developers apply to improve the image size and
build time of Docker images?

15

We want to investigate the developers’ activity on existing Dockerfiles to16

capture the common change patterns applied to improve the image size and17

build time of the resulting images.18

RQ2:To what extent do performance improvement changes impact image
size and build time of Docker images?

19

With this RQ, we aim to measure the impact of individual changes on20

image size and build time. This analysis allows us to identify which changes21

produce improvements and which may introduce tradeoffs or negative effects.22

3.1 Data Collection23

The context of our study is represented by commits extracted from the dataset24

proposed by Eng et al. [8]. While other Dockerfile datasets exist [9, 16], this25

is, currently, the largest one in the literature. It contains the change history of26

Dockerfiles extracted from all the open-source GitHub repositories up to 2021.27

The data extracted regard a total of 1.9M repositories, for a total of 11.5M28

commits related to about 9.4M Dockerfiles. We chose this dataset because it29

provides both breadth (large and diverse project base) and depth (historical30

commit-level changes to Dockerfiles). Unlike other datasets (such as Henkel31

et al. [9] which contains a subset of Dockerfiles specific for writing patterns, Lin32

et al. [16] which contains only Dockerfiles related to Docker Hub repositories,33

and Zeourali et al. [27] which contains only Debian-based images), the one34

Title Suppressed Due to Excessive Length 7

Open-source

Dockerfile
changes

NLP-based

filtering procedure

Manual validation

and tagging

Phase 1

text

normalization

Phase 2

keyword-based

query

Taxonomy of

changes

Fig. 2: A summary of the experimental procedure applied to extract the
performance-related changes analyzed in our study.

provided by Eng et al. [8] includes commit-level evolution traces (i.e., both1

commits and modified files) specifically related to Dockerfiles, enabling us2

to reconstruct and analyze the changes performed by developers over time.3

We needed a dataset with detailed commit histories to (i) extract meaningful4

change patterns, (ii) ensure that the modifications were made by developers5

themselves with the intent of improving performance, and (iii) is representative6

of the development activities in open-source repositories. For our study, we7

selected a subset of those changes, composed of the commits aimed at reducing8

the build time and image size of the resulting Docker images. To achieve this,9

we rely on the commit message, i.e., we select the commits in which developers10

explicitly report the intention of improving the build time or reducing the size11

of the Docker images. To extract performance-related changes, we applied a12

keyword-based filtering heuristic (described below), targeting commits whose13

messages explicitly reference improvements to image size or build time. We14

manually validated these commits to ensure they include meaningful Dockerfile15

changes, as discussed later in Section 3.2. While our sample is not exhaustive, it16

is designed to be representative of real-world, performance-oriented Dockerfile17

modifications.18

We defined a heuristic approach to filter commits based on what developers19

reported in the commit message using Natural Language Processing (NLP)20

techniques. In particular, we defined a Python NLP pipeline using the Spacy4
21

tool. The pipeline is composed of two phases: a text pre-processing phase,22

followed by a keyword-based query to select only the relevant commits. The23

entire process is reported in Fig. 2 and detailed below.24

Text Pre-processing. First, we split the plain text in commit messages25

into single tokens (i.e., words). We achieve this by applying word tokenization.26

Follows a stop-word filtering, in which the non-informative tokens (such as ar-27

ticles and conjunctions) are removed. As a last step, we apply a lemmatization28

procedure that reduces each word to the root form (e.g., changing becomes29

change) maintaining the original meaning. This results in a list of tokens that30

can be analyzed in the next step.31

Keyword Selection. To filter only the performance-related commits im-32

proving build time and reducing Docker image size, we applied a keyword-33

based filter to the processed commit messages using two different queries, one34

4 https://spacy.io/

https://spacy.io/

8 Giovanni Rosa et al.

image size target1 target2build time

Q1: Image Size Q2: Build Time

Fig. 3: The queries used to filter performance commits. The first two keywords
are connected with an AND operator, while the other ones (target1 and target2,
respectively) are connected with an OR operator.

for each scope. The queries have been defined via a manual process in which1

one of the authors extracted the dictionary from all the commit messages (i.e.,2

the unique words appearing in them) and selected the ones judged as relevant3

to indicate an improvement in each of the two aspects we focused on. In the4

end, we defined the two queries (Q1 and Q2) reported in Fig. 3.5

When applying query Q1, a commit is selected if it contains both the tokens6

image and size, and one of the tokens from the set target1 (e.g., decrease).7

Likewise, when we apply query Q2, a commit is selected if it contains both8

the tokens build and time, plus one of the tokens from the set target2 (e.g.,9

drop). In the end, a commit is selected if the commit message matches with10

at least one of the two queries.11

3.2 Experimental Procedure12

To answer RQ1, we applied our filtering procedure to all the commits contained13

in the dataset by Eng et al. [8]. Thus, we obtained a subset of 11,000 commits14

matching at least one of the two queries. We excluded all the commits that are15

no longer available. Also, one of the authors manually validated the commit16

messages, along with the changes, selected by the two queries excluding those17

that are (i) false positives wrongly selected by our heuristic approach (e.g.,18

commit5 since in the message the author explicitly report: “[...] the resulting19

image is slightly larger”), (ii) not available anymore, and (iii) duplicated (i.e.,20

from forked repositories). In addition, the author double-checked and anno-21

tated if the commit improves the build time, decreases the image size, or both:22

Indeed, some of the commits we selected for one of the aspects were also aimed23

at improving the other one. In this step, our aim was to simply check if the in-24

tention of the developers was to improve performance, i.e., if commit message25

explicitly mentioned the willing to reduce the build time, the image size, or26

both of the aspects on the performed change. We did this because the simple27

automated filtering approach we adopted could introduce false positives. For28

5 https://github.com/hypothesis/bouncer/commit/0313392

https://github.com/hypothesis/bouncer/commit/0313392

Title Suppressed Due to Excessive Length 9

example, we discarded a commit6 from jrgm/fxa. Even though it contained1

the matching keywords (“feat: reduce build time for fxa-email-service.”), the2

message did not refer to improved Dockerfile build time, but rather to a refac-3

toring of the program code. Incidentally, the Dockerfile was modified as well.4

The process is performed one commit at a time, applying both queries, until a5

sample of 1,026 valid commit candidates is reached. This is in line with similar6

studies from the literature [14]. Next, two of the authors manually annotated7

the commits with one or more tags to describe the type of change. The two8

annotators had a “fair” agreement rate (κ = 0.4) [15]. Next, we performed a9

cross-validation phase which involved both the two original annotators and an10

additional annotator (one of the authors) to discuss and resolve the conflicts.11

Note that, during the manual validation, some commits have been flagged as12

not valid (i.e., the change can not concretely reduce the build time or the13

image size7), and thus excluded from the final set of commits. In the end, we14

obtain a total of 905 valid commits. The agreement rate between the resolu-15

tion annotator and the two annotators resulted as “moderate” (κ = 0.55) [15].16

We provide the final set of selected commits in the replication package [20] to17

support future studies.18

Finally, we use a card-sorting inspired approach [24] to categorize the tags19

we identified and organize them in a taxonomy. More specifically, the two20

annotators started with a first round aimed at abstracting the tags. Then,21

followed two more rounds in which they grouped the similar changes. In the22

end, they discussed the obtained tags and ordered them in macro- and sub-23

categories to build a first draft of the taxonomy. A final round followed in24

which the two annotators double-checked each tag and the assigned category,25

by renaming and reordering them when needed. After this, the final version of26

the taxonomy has been obtained. Note that this step was not performed inde-27

pendently, but collaboratively by the annotators. The disagreements in terms28

of categories to merge and position in the taxonomy were directly discussed29

and resolved in this phase. For each change, we report the number of occur-30

rences and which aspect it improves (i.e., build time, size, or both). We report31

and discuss in detail the taxonomy reporting some representative examples for32

each category. The workflow adopted is summarized in Fig. 2.33

To answer RQ2, we first select the categories of fixing patterns of interest34

and, consequently, the commits that we will focus on. Then, we manually35

isolate the performance-improving changes in the Dockerfiles to measure the36

improvement of each category. Finally, we built such Dockerfiles and measured37

the build time and image size. We report in details below each of such step.38

Category Selection. We base the selection of the categories for which we39

measure the impact in terms of image size and build time on two criteria: (i)40

theoretical adequacy (given our experimental setup), and (ii) data availability.41

As for the former, we first exclude all the categories related to the Docker42

cache (i.e., move sources copy at bottom, copy/install requirements beforehand,43

6 https://github.com/amitmbee/krapp/commit/7c80f82
7 https://github.com/cropgeeks/docker/commit/bb96380

https://github.com/amitmbee/krapp/commit/7c80f82
https://github.com/cropgeeks/docker/commit/bb96380

10 Giovanni Rosa et al.

Table 1: Categories of changes analyzed to answer RQ2.

Category #Instances

change base image variant 26
choose a different base image 13
use multi-stage build 13
join RUNs 10
remove unused bin. and dep. 7
remove inst. dep. and src. 4
remove apt-get lists 4
apt-get clean-autoclean 3
remove apk cache 2
apk –no-cache 2

Total 84

and compile for fewer versions/targets) since they are incompatible with the1

procedure we adopted to measure build time. Such changes reduce the build2

time only after the first build has been completed (since they improve the use3

of caching mechanisms). However, as we will explain later, we disabled Docker4

cache to measure the build time multiple times in a reliable way without biases.5

Second, we discarded the extract Dockerfile as base image category because6

it would have been necessary to design an ad-hoc procedure to first build7

the extracted Dockerfile and then the target one. Note that each extracted8

Dockerfile could have been at a different path, based on the project at hand.9

We filter out all the commits belonging to such discarded categories. Given10

the remaining commits belonging to the selected categories, we performed11

a test build of all the Dockerfiles before and after the change. We filtered12

out commits for which the build before the change failed (i.e., 453 cases).13

When the build succeeded in the version before the change but failed in the14

version after the change (24 cases), we manually inspected and attempted to15

fix such Dockerfiles. We could do this for only two of them. The build errors16

in the other 22 Dockerfiles depended on outdated or missing resources (e.g.,17

unavailable base images or deprecated libraries). Thus, we discarded them. We18

also discarded a commit8 because the new base image adopted resulted in an19

empty image which likely means that there this was part of a bigger change or20

a developers’ mistake. Given the remaining commits after this filtering (i.e., 9221

instances), we re-counted the number of commits available for each category22

of change and further discarded the categories for which we ended up with23

less than two examples9. We did this because any conclusion deriving from24

a single measurement could be too project-specific and thus not sufficiently25

generalizable. We ended up with 10 categories, depicted in Table 1.26

8 https://github.com/razzkumar/todo/commit/0bfe035
9 We further removed remove unused packages, remove temporary files in /tmp/*

/var/tmp/*, remove-avoid dev dependencies, apt-get –no-install-recommends, remove lay-
ers, remove-avoid pip cache, build binaries and copy to container, apt-get purge-autoremove

Title Suppressed Due to Excessive Length 11

Isolating the Performance-Improving Changes. Each performance-1

improving commit could tackle one or more categories. We want to measure2

the impact at the level of the category of change. Therefore, we needed to3

separate the changes belonging to different categories. For example, if a com-4

mit both changed the base image and joined RUN instructions, we wanted to5

have two improved version: one only with the new base image (with non-joined6

RUN instructions) and one with joined RUN instructions (but with the old base7

image). We manually defined alternative improved versions of the Dockerfiles8

(based on the after version actually written by the developers) for each commit9

to which we assigned more than one tag in RQ1. This allowed us to indepen-10

dently test the improvement of each category. As a result, for each commit,11

we have one original Dockerfile (D0, i.e., the one before the improvement)12

and n Dockerfiles (Di, each one implementing a single performance-improving13

change).14

Measuring Build Time and Image Size. For each commit under anal-15

ysis, we cloned the repository and checked it out at that specific snapshot. In16

this context, we iteratively replaced the Dockerfile under test with D0 (the17

one without improvements) and each improved version Di. For each of them,18

we ran a warm-up build of the Docker (to make the system download the base19

images) followed by 20 builds, for which we measured the build time and the20

resulting image size. We did this to account for the non-determinism of build21

time (the image size, on the other hand, is deterministic). In this step, we22

disabled the Docker cache to ensure consistent measurements as for the build23

time.24

Statistical Analyses. To study the impact on image size, we analyze, for25

each category C, the percentage of cases in which the size is reduced, increased,26

or did not change at all by comparing the size of D0 with the size of the Di27

of implementing the change C. In addition, we check the significance of the28

difference of each category by using the Wilcoxon Signed-Rank test [25]. The29

null hypothesis is that the category of improvement has no effect on the image30

size. We reject the null hypothesis if the p-value is lower than 0.05. We also31

compute the effect size to quantify the magnitude of the significant differences32

we find. We use Cliff’s Delta [17] since it is non-parametric. We use Cliff’s33

delta lays in the interval [-1, 1]: The effect size is negligible for |δ| < 0.148,34

small for 0.148 ≤ |δ| < 0.33, medium for 0.33 ≤ |δ| < 0.474, and large for35

|δ| ≥ 0.474.36

To analyze the build time we used an analogous procedure. In this case, we37

have 20 measurements for each build. Given the build times of D0 and a Di,38

we check whether the change allows to significantly modify the build time by39

using the Wilcoxon Signed-Rank test [25]. The null hypothesis here is that the40

specific modification did not impact the build time (the differences we observe41

are due to the chance). When the p-value is lower than 0.05, we say that single42

change increases or reduces the build time (based on the mean build time).43

All the other instances, instead, do not change the build time. We report, for44

each category, the percentage of cases in which the related changes improved,45

reduced, or did not affect the build time. Besides, similarly to what we do46

12 Giovanni Rosa et al.

for image size, we consider the mean build time of each instance and use the1

Wilcoxon Signed-Rank test [25] to test if the category of changes significantly2

affects the build time. The null hypothesis is that the category of improvement3

does not affect such a variable. Again, we also report the Cliff’s Delta for the4

categories that have a significant impact.5

3.3 Technical Setup and Data Availability6

To ensure consistency and reproducibility of the results reported in our anal-7

ysis, all experiments (including Docker image builds and performance mea-8

surements) were executed on a cloud virtual machine exclusively allocated for9

this study. The machine was configured with the following specifications: Intel10

Broadwell (no TSX, IBRS) CPU with 8 cores at 2.2 GHz, 20 GB of RAM, and11

a 400 GB solid state drive (SSD). The operating system is Ubuntu 22.04.5 LTS,12

with kernel 5.15.0-25-generic. The software environment includes Bash 5.1.16,13

Python 3.11.11, Ruby 3.0.2p107, and Docker 28.0.1. All the scripts adopted14

to run the experiment are written in Python and Ruby. No other tasks or15

processes were executed concurrently on the machine during the experiment16

sessions to avoid any interference and ensure the stability and accuracy of17

time measurements. The execution of the whole measurement experiment took18

about one week on such a dedicated machine. We provided the tagged commit19

dataset, the NLP filter heuristic and the scripts used to run the measurement20

experiment in our replication package [20].21

4 Empirical Study Results22

This section reports the analysis of the results for the two research questions23

of our study.24

4.1 RQ1: Mining Performance Changes25

We report in Fig. 4 the taxonomy of changes applied by developers to reduce26

the build time and image size of Dockerfiles and Docker images. We report, for27

each category, the number of occurrences of that type of change. Moreover,28

we report the single change as an attribute having the number of specific29

occurrences and a badge indicating if the change reduces the image size (S),30

the build time (T), or both (S and T). We assigned a total of 1,230 tags31

grouped in 4 different macro-categories, as described in the following.32

Debloating describes changes aimed to remove or avoid unnecessary files33

and dependencies during the build process of the Dockerfile. Dockerfile Ar-34

chitecture describes changes aimed at improving Dockerfiles by performing35

structural modifications, such as joining instructions or changing the base im-36

age. Caching describes changes aimed at using the caching procedure during37

the build of Docker images in a more efficient way. Finally, Tweaks describes38

Title Suppressed Due to Excessive Length 13

Base
Image

Use
Caching

Caching

Avoid
Caching

Sort
Instructions

Debloating

Tweaks

Dockerfile
Architecture

change base image
variant

apt-get
clean/autoclean

50

S T

.dockerignore

34

S T

apt-get
--no-install-recommends

28

S T

remove unused
packages

15

S T

compile for fewer
versions/targets

11

S T

build binaries
and copy to container

10

T

extract dockerfile as
base image

12

S T

copy only app sources

3

S T

apk --no-cache

13

S

move dependencies
install at top

7

S T

split RUNs

5

T

remove/avoid
dev dependencies

12

S T

remove
unused/unnecessary

binaries and
dependencies

42

S T

make clean

2

S T

apt-get
purge/autoremove

13

S

remove/avoid
pip cache

17

S

yum clean

8

S T

remove
layers

12

S T

Package Manager
Cleanup

Avoid
Wasteful Data

join RUNs

165

S T

remove temporary files
in /tmp/* /var/tmp/*

21

S T

build/install
dependencies in

parallel

4

T

avoid dependency
upgrade

6

S T

move commands to
external script

8

S T

remove multi-stage
build

3

T

use OS pkg. manager
over dependency

manager/sources build

6

S T

join COPYs

3

S T

mount volume
for cache/sources

3

T

142

S T

choose a different base
image

129

S T

remove
yum cache

10

S T

cache dependencies

4

S

join ENVs

3

S T

T

copy non-mutable
sources at beginning

5

T

Build
stages

Install
Operations

Tool-specific

6%

12%141

824%3470%99

62%271

49%603

35%209
35%209

36%439

33%146

4%47

21%10 79%37

use
multi-stage build

135

S T

Multiple
Dockerfiles

5%22

Reduce
Layers

31%185

remove install/build
dependencies and sources

69

S T

git clone --depth 1

4

T

bundle --no-cache

3

S

(+8)

(+8)

(+8)

change ADD in COPY

2

T

remove
apt-get lists

69

S T

split dockerfile

9

S T

switch
from npm to yarn

2

T

move sources copy
at bottom

45

S T

copy/install
requirements
beforehand

29

S T

remove
apt cache

6

S T

remove apk cache

17

S

(+1) (+1)

change Java
distribution

2

S

(+3)
(+2)

(+1)

Fig. 4: Taxonomy of changes reducing build time and image size for Dockerfiles
and Docker images. The total number of occurrences are reported for each
category and sub-category. Additionally, attributes have a badge indicating if
the change reduces the image size (S), the build time (B), or both (S and T).

14 Giovanni Rosa et al.

Fig. 5: Example of a “Debloating” change, aimed at removing the apt cache
and sources lists.

changes aimed at optimizing the usage of tools for build and dependency in-1

stallation.2

The most frequent changes are categorized as Debloating (49%), followed3

by Dockerfile Architecture (36%). Categories Caching and Tweaks are the less4

frequent (12%) and 4%). The changes in Debloating mainly impact the final5

image size, while those in Tweaks and Caching the build time. On the other6

hand, changes in Dockerfile Architecture impact both aspects. In the following7

we describe them in detail by reporting some examples.8

4.1.1 Debloating9

To reduce the clutter in Docker images, developers remove the additional data10

used by package managers (209 occurrences), i.e., by performing a cleanup of11

the packages, data, and cache during the installation of dependencies. This12

kind of change mainly aims to reduce the image size. For example, when in-13

stalling a dependency using the apt package manager, a common pattern is to14

run apt-get clean, remove apt lists and the used cache. In some cases, run-15

ning additionally the command apt-get autoremove could also contribute to16

remove unnecessary files. We report in Fig. 5 an example for remove apt-get17

lists and apt-get clean/autoclean changes, proposed in commit10. Specifically,18

apt-get clean and the removal of the sources lists have been added right after19

calling apt-get install to install packages.20

Other types of changes are focused on the removal of wasteful data (20921

occurrences). Examples are excluding development dependencies from the fi-22

nal Docker image or removing temporary files (e.g., removing /tmp/* and23

/var/tmp/*). Another typical change is the addition of a .dockerignore file.24

Such a file contains patterns of files that should be excluded from the build25

context. This change has a positive impact on both the build speed (i.e.,26

smaller context to handle) and the size, as it might reduce the number of files27

that are copied in the image through COPY or ADD instructions.28

10 https://github.com/binfalse/docker-debian-testing-java8/commit/fdcebf4

https://github.com/binfalse/docker-debian-testing-java8/commit/fdcebf4

Title Suppressed Due to Excessive Length 15

Fig. 6: Example of a “Dockerfile Architecture” change in which the base image
is replaced with one including haskell dependencies.

Finally, developers often aim at reducing the number of layers in the Docker1

image (185 occurrences) to reduce both the image size and the build time. To2

do this, in most of the cases, developers join several RUN instructions in a single3

one.4

4.1.2 Dockerfile Architecture5

The most frequent type of modification from this category is the change of6

the base image (271 occurrences). Developers usually prefer a variant of the7

same Docker image (142 occurrences), e.g., python:3.11-alpine instead of8

python:3.11. A common example is the adoption of the alpine flavor of the9

same base image, which is typically smaller. Alternatively, they switch to a10

completely different base image (129 occurrences) because either it is smaller11

(e.g., from ubuntu to debian) or reduces the build time because it already has12

the binaries for some required dependencies (e.g., from the generic ubuntu to13

one already including python). Thus, the installation steps for those depen-14

dencies are removed from the Dockerfile reducing the overall build time. An15

example of a Base Image change is reported in Fig. 6 (from commit11). In16

detail, the generic ubuntu base image is replaced with a more specific one con-17

taining already the required haskell dependencies, avoiding installing them18

after in the Dockerfile.19

Another frequent operation is adding or modifying Build Stages (146 oc-20

currences) of the Dockerfile. In this case, developers more often restructure21

the Dockerfile enabling multi-stage builds (135 occurrences). This consists of22

grouping the Dockerfile instructions in separate stages, corresponding to iso-23

lated steps of the build process executed in a new Docker image. This allows24

to discard temporary files, reducing the size of the final image (used as the25

final step), and easily handling the build dependencies (e.g., using a pre-built26

image) reducing also the build time.27

11 https://github.com/vmware-archive/kubeless-ui/commit/6741125

https://github.com/vmware-archive/kubeless-ui/commit/6741125

16 Giovanni Rosa et al.

Fig. 7: Example of a “Caching” change in leveraging the layer caching to
optimize the build.

Finally, developers radically change the way they containerize their soft-1

ware by splitting a single Dockerfile in several ones. As an example, they2

sometimes extract several instruction and define a new Dockerfile; the result-3

ing image is used as the base image of the remainder of the Dockerfile, which is4

the main one. This type of modification allows developers to reduce the build5

time of the main image (since part of the build is now a Docker image that is6

cached and rarely requires to be built again) and the build size (since the the7

base image can be further optimized, e.g., by compacting its layers).8

4.1.3 Caching9

The changes in this category consist mainly of modifying the instruction order10

(Sort Instructions, 99 occurrences) to improve the usage of the layer caching11

during the build. This means, for example, moving the COPY instruction to12

the bottom of the Dockerfile (45 occurrences). Since the source files are those13

that usually change, it will result in a faster build, especially during devel-14

opment. Another common operation is to copy and install the requirements15

before copying sources or performing other operations (29 occurrences), in16

order to reduce the build time. A common example (Fig. 7) is to copy only17

the Python requirements.txt before installing the requirements separately18

Title Suppressed Due to Excessive Length 17

Fig. 8: Example of a “Tweaks” change avoiding the upgrade of the dependen-
cies installed using pip.

from the other sources. This will leverage the Docker cache speeding up the1

following build when updating the source code files12.2

Interestingly, developers sometimes need to avoid caching to improve per-3

formance (34 occurrences). Indeed, while caching at the Docker level is positive4

(e.g., the previously-mentioned layer caching mechanism), using the cache of5

the package managers during the build is mostly negative. Such a mechanism,6

indeed, increases the image size (the cache is inside the resulting Docker im-7

age) but it does not speed up the build since those files will be discarded in8

the next build (or the layer caching mechanism will take over whatsoever).9

This is why developers tend to explicitly use options to avoid caching in apk,10

pip and bundle.11

Finally, developers apply more specific changes to enable the use of caching12

in a few cases (8 occurrences). For example, we found that, in some cases (313

occurrences), developers adopt an external VOLUME with the dependency cache14

and mount it during the build to speed it up.15

4.1.4 Tweaks16

The changes occurring less frequently are those aimed at optimizing the usage17

of tools (Tool-specific, 10 occurrences) and Install Operations (37 occurrences).18

An example for the first is switching to a more efficient tool (i.e., from npm to19

yarn). This change helps to reduce the build time13. For the latter, developers20

usually build a part of the required binaries outside the container, to reduce21

the total build time of the image (10 occurrences). Also, they compile sources22

optimizing the targets and versions (6 occurrences) to reduce build time over-23

head and storage size. We report an example for Avoid Dependency Upgrade24

in Fig. 8, in which the flag −−keep−outdated prevents the upgrade of pip25

packages before installing.1426

12 https://github.com/detiuaveiro/social-network-mining/commit/020d5c3
13 https://github.com/pnpm/benchmarks-of-javascript-package-managers
14 https://github.com/Y-modify/deepl2-infra/commit/0edee8b

https://github.com/detiuaveiro/social-network-mining/commit/020d5c3
https://github.com/pnpm/benchmarks-of-javascript-package-managers
https://github.com/Y-modify/deepl2-infra/commit/0edee8b

18 Giovanni Rosa et al.

Û Results Summary: Four main type of changes are performed by de-
velopers to improve the image size and build time of images: Those for
Debloating (49%), changing the Dockerfile Architecture (36%), optimizing
Caching (12%), and installation Tweaks (4%).

1

2

4.2 RQ2: Measuring the Impact of Performance Changes3

We report the results of the analysis conducted for RQ2 in Table 2 (image4

size) and Table 3 (build time).5

As for the image size, the most effective strategies are those involving the6

modification of the base image. In detail, modifying the variant of the base7

image led to a reduction in the size of the final image in most of the cases8

analyzed. This category showed a statistically significant effect with a large9

effect size, indicating its practical relevance. On average, changing the base10

image variant reduced the image size by 62% (69% when considering only11

the ones that actually resulted in reduced image size). Choosing a completely12

different base image led to substantial reductions in size as well, with statistical13

significance and a large Cliff’s delta. In this case, however, the reduction is14

slightly more moderate (∼15%, 54% when considering only the cases that15

resulted in reduced size). Multi-stage builds also resulted in consistent and16

substantial reductions of the image size: When implementing such a pattern,17

the image size was reduced by 62%, on average (74% when considering only18

the ones that reduced image size).19

Note that all the previously-reported patterns require a non-negligible re-20

work of the Dockerfile. However, even simpler modifications, such as joining21

RUN instructions, result in significant and substantial improvements. On av-22

erage, the image size gets reduced by ∼24% (30% when considering only the23

instances that reduced the image size).24

All the other practices we analyzed, such as cleaning package manager25

cache or removing unused files, while generally beneficial, had more limited26

impact. Note that this is not only due to the low number of instances we27

analyzed (which probably led to non-significant differences), but also to the28

low gain obtained from such cases. Some of such practices do not change the29

image size at all (e.g., the use of clean and autoclean) or cause very limited30

benefits (e.g., removing the apk cache only reduces the image size by ∼2%).31

As for build time, the results are more nuanced. First, changing the base32

image or its variant often causes an enormous increase in build time (131% and33

156%, respectively). This increase in build time is statistically significant for34

the former category. The same is true for the adoption of multi-stage builds.35

Such changes implicitly require developers to choose a new base image for36

the last stage, which contains the actual image that will be generated. Again,37

using a smaller image (like developers often do) can require to introduce new38

RUN instructions to install dependencies that used to be included in the base39

Title Suppressed Due to Excessive Length 19

Table 2: RQ2. Impact of different change patterns on the image size.

Category Reduced Neutral Increased p-value Cliff’s δ

change base image variant 25/26 0/26 1/26 <0.01 0.92 (large)
choose a different base image 8/12 1/12 3/12 0.18
use multi-stage build 11/13 0/13 2/13 <0.01 0.69 (large)
join RUNs 8/10 2/10 0/10 0.01 0.80 (large)
remove unused bin. and dep. 5/7 1/7 1/7 0.04 0.57 (large)
remove inst. dep. and src. 2/4 2/4 0/4 0.18
remove apt-get lists 2/4 2/4 0/4 0.18
apt-get clean-autoclean 0/3 3/3 0/3 - -
remove apk cache 2/2 0/2 0/2 0.50
apk –no-cache 1/2 0/2 1/2 1.00

Table 3: RQ2. Impact of different change patterns on the build time.

Category Reduced Neutral Increased p-value Cliff’s δ

change base image variant 6/26 5/26 15/26 0.01 -0.46 (medium)
choose a different base image 3/12 3/12 6/12 0.57
use multi-stage build 5/13 2/13 6/13 0.54
join RUNs 5/10 1/10 4/10 0.69
remove unused bin. and dep. 2/7 3/7 2/7 0.81
remove inst. dep. and src. 3/4 1/4 0/4 0.13
remove apt-get lists 0/4 4/4 0/4 0.38
apt-get clean-autoclean 1/3 1/3 1/3 1.00
apk –no-cache 0/2 1/2 1/2 0.50
remove apk cache 1/2 1/2 0/2 1.00

image of the single-stage Dockerfile. We could not observe any change pattern1

that leads to statistically significant improvements in terms of build time. For2

example, the use of multi-stage builds, though beneficial for image size, did3

not consistently reduce build time in our measurements. Likewise, joining RUN4

instructions, while helping reduce the number of layers, had a negligible or5

inconsistent effect on build time. The categories related apk --no-cache or6

purging package managers’ caches, showed no clear benefit in terms of build7

time. There are two cases in which we observed a reduction of build time8

when removing the apk and apt cache. There is no theoretical reason why9

this should happen: Indeed, both modifications imply the execution of an10

additional instruction, i.e., the build time should remain the same in the best11

case scenario. We suspect such results could be due to temporary issues with12

the server (e.g., higher network traffic). In both cases, however, the results13

are not significant. The analysis highlights that performance improvements in14

Dockerfiles are more reliably achieved in terms of image size rather than build15

time.16

An interesting observation is that the change of base image requires the17

evaluation of a trade-off between image size and build time. We depict in18

Fig. 9a and Fig. 9b the impact of changing the base image variant on size19

and time, respectively. It is clear that such a solution produces a substantial20

reduction in image size, but it also substantially increases the build time.21

20 Giovanni Rosa et al.

Before Change After Change
0

500

1000

1500

2000

2500

Im
ag

e
Si

ze

(a) Image size before and after changing
the base image.

0

100

200

300

400

500

B
ui

ld
 T

im
e

Before Change After Change

(b) Build time before and after changing
the base image.

Fig. 9: Effect of changing the base image on image size and build time.

Û Results Summary: Changes that involve the base image are the most
effective in reducing Docker image size, with statistically significant im-
provements and large effect sizes. Multi-stage builds and instruction joining
(e.g., RUN) also reduce image size effectively. On the other hand, improve-
ments in build time are less consistent.

1

5 Discussion2

In this section, we provide some takeaways extracted from our results and3

implications for future studies.4

5.1 Takeaways5

� Finding 1. Choosing an efficient base image is key. Choosing a bet-6

ter base image in terms of size or embedded dependencies appears to be the7

most impacting change to improve performance. In fact, it is actually the most8

frequent change performed by developers (271 occurrences), and it allows to9

achieve a significant reduction of the final image size and build time. Previous10

work [21] suggest that a rule of thumb could be to rely on official Docker11

images, better if they already contain some of the required dependencies. An-12

alyzing more in detail the changes collected in RQ1, developers usually switch13

to the alpine variant, or, in general, they switch to alpine base images.14

� Finding 2. There is some free lunch. As previously reported, choosing a15

good base image is fundamental. However, changing the base image is a double-16

edged sword. Reducing the base image size might result in significantly higher17

build time due to the overhead related to the installation of additional packages18

not ready-available in it. Having a smaller image is generally more desirable19

since it reduces the cost of deployment, but higher build times negatively20

impact the time to deploy. The problem here is that pre-defined base images are21

one size fits all that are rarely good enough as they are for any software system.22

There is, however, a solution to this problem that would allow developers to23

achieve both goals (i.e., reducing both image size and build time). In our24

Title Suppressed Due to Excessive Length 21

mining study, we found a very limited number of examples of cases in which1

developers extract a Dockerfile that they use as a tailored base image for the2

main Dockerfile. This allows them to have a small image size (they can use a3

small base image on which they can install all the required dependencies once)4

and lower build time (the Dockerfile dedicated to build the base image needs5

to be built less frequently than the main one). While this change increases the6

complexity of the project, it might result in optimal performance.7

� Finding 3. The cost of the change can be more than the improve-8

ment. Some changes provide a very small improvement that is less than the9

cost to perform it. An interesting case is commit15 in which the removal of10

build and install dependencies increases the build size, as previously reported.11

Each added RUN instruction produces a layer causing a space wastage, nullify-12

ing the improvement of the change. In general, we observed that some changes13

(such as removing the apt-get lists or apk cache) result in negligible benefits14

both in terms of image size and build time. We recommend practitioners to pay15

less attention to such finer-grained optimization and focus on more impacting16

aspects before (such as, again, the base image).17

� Finding 4. Some changes are useful only for specific usage pat-18

terns. As reported in the previous section, changes like caching dependencies19

or copy/install requirements beforehand are not effective in the first build of20

the image. However, they became effective only in successive build (e.g., by21

caching maven dependencies). This pattern is positive when Dockerfiles are22

locally used for development, for which it is required to frequently run a build23

to test the containerized product. However, the contrary is true when they are24

integrated in CI/CD pipelines that do not rely on caching.25

5.2 Implications26

A part of the changes reported in our taxonomy (Fig. 4) are related to the27

best writing practices suggested by Docker [2]. Examples are using multi-stage28

build and join RUNs. Moreover, the existing catalogs of writing violations (i.e.,29

Dockerfile smells) cover also a part of those changes [1, 10]. We report in30

Table 4 the changes identified in our study that were already defined (entirely31

or partially) in previous work. Our investigation proposes a total of 25 new32

practices. In some cases, the practice is similar to an existing one but extended33

to a different tool or platform. An example is the usage of −−progress flag34

with npm, which is conceptually similar to rule DL3047 from hadolint. It is35

worth noting that some of the practices we identified and not present in any36

previous catalog, like the change of the base image variant, are very frequently37

adopted by developers and have a substantial impact on either build time or38

image size.39

Our results provide clear indications for researchers and tool builders on40

the aspects they should focus on. In particular, future research should focus41

15 https://github.com/rlegrand/dvim/commit/055a81d

https://github.com/rlegrand/dvim/commit/055a81d

22 Giovanni Rosa et al.

Table 4: Summary table of the identified changes that are in overlap with
existing catalogs, i.e., Docker Official guidelines [2] (Off), hadolint tool [1]
(Ha), Binnacle [10] (Bi), DRIVE [30] (DR), DOCKERCLEANER [5] (DOC), and the
study of Ksontini et al. [14] (Ks). We reported the cases in which there is a
partial (□) or full (✓) overlap.

Change Off Ha Bi DR DOC Ks

apt-get −−no-install-recommends ✓ ✓ ✓ ✓
apk −−no-cache ✓ ✓ ✓
remove apt cache ✓ ✓
remove yum cache ✓ ✓ ✓
remove apk cache ✓ ✓
remove apt-get lists ✓ ✓
remove/avoid pip cache ✓ ✓ ✓
change ADD in COPY ✓ ✓ ✓
join RUNs ✓ ✓
remove install/build dependencies and sources □ □
use multi-stage build ✓ ✓
.dockerignore ✓
copy non-mutable sources at beginning ✓
move dependencies install at top ✓
move sources copy at bottom ✓
remove unused/unnecessary binaries and deps. ✓
remove unused packages ✓
apt-get clean/autoclean ✓
remove temporary files in /tmp/* /var/tmp/* □
move commands to external script ✓
remove layers ✓

on approaches aimed at suggesting the modifications that require particular1

effort by developers to apply. An example can be the definition of approaches2

for the automated refactoring of complex Dockerfiles as multi-stage builds.3

Also, approaches that can suggest what are the unnecessary dependencies and4

sources that can be removed, taking as input a Dockerfile. Last but not least,5

recommending developers a better base image replacement can have a high6

impact on performance improvement. In this direction, existing approaches7

for base image recommendation could be adapted to this specific aim [13,29].8

6 Threats to validity9

In this section, we report the threats to the validity of our study.10

Construct Validity. We assumed that the commits selected by our NLP11

filter have an effective impact in terms of build time and image size on the12

resulting Docker images. However, this could lead to false positives where the13

commit message reports the intention of improvement, but the change itself,14

by design, does not provide it. An example is the commit16 where the type of15

change is not effective in reducing the build time of the image. We mitigate16

16 https://github.com/alubbock/thunor-web/commit/c77ccbb

Title Suppressed Due to Excessive Length 23

this by performing a manual validation on the changes selected by the filter.1

Moreover, our filtering approach is designed to be simple and explainable, i.e.,2

replying on a keyword-based marching heuristic, to mitigate any sampling3

bias.4

Internal Validity. There is a possible subjectiveness introduced during5

the manual annotation of the change applied by each commit. We mitigated6

this by adopting a conservative approach, i.e., we did not “interpret” the7

commit change, but we mainly relied on information provided by the commit8

message. Also, the process has been executed independently by two different9

annotators discussing and resolving conflicting tags with a third annotator.10

Another threat to internal validity is the relatively low number of correspond-11

ing commits (11k out of 11.5M). Although this number may seem small, we12

conjecture it reflects the fact that performance improvements are rarely de-13

scribed explicitly in commit messages. On the other hand, despite we defined14

our queries from a large vocabulary analysis, some relevant but implicitly de-15

scribed changes may have been excluded. To answer RQ2 we measured build16

time, which is an inherently stochastic variable. Docker build time depends17

on several factors, including the server load and the network traffic. To mini-18

mize the influence of chance on such measurement, we used an ad-hoc virtual19

machine on which no other processes were running. Besides, we repeated each20

build 20 times. It is still possible that the categories for which we observed a21

low number of significant improvements do have an impact on build time, but22

it is too small to be measured with our experiment (e.g., a higher number of23

builds would have been necessary). The reported Cohen’s Kappa reflects some24

disagreement among annotators, mainly due to the fact that some tags are very25

similar and might be used interchangebly, given the fact that we did not estab-26

lish the specific tags before starting the manual labeling phase (finding out the27

categories was part of the goal of our mining study). For example, a commit1728

from amitmbee/krapp involved a change to the source repository of the base29

image: The developer changed the base image from alpine-node:latest to30

mhart/alpine-node:latest. One of the evaluators tagged this change as a31

simple change base image, while the other used the change base image variant32

tag, which is more specific. Note that, in this case, both tags might be correct,33

but it is important to tag similar changes in a consistent way. To mitigate34

this threat and ensure consistent labeling, a third annotator was involved to35

resolve such conflicts.36

External validity. The taxonomy proposed in our study is based mainly37

on open-source Dockerfiles. This means that there could be some differences38

when applied in an industrial context. In addition, since our dataset was built39

by filtering commits based on performance-related keywords in commit mes-40

sages, there is a potential threat that less common or implicitly applied op-41

timization strategies are underrepresented. As a result, the taxonomy may42

emphasize more frequently reported or explicitly documented practices. Cur-43

rently, we considered only files which name, or part of it, contains the string44

17 https://github.com/amitmbee/krapp/commit/7c80f82

https://github.com/amitmbee/krapp/commit/7c80f82

24 Giovanni Rosa et al.

“dockerfile” (not case sensitive). We may miss some Dockerfiles that are not1

named according to the convention. This introduces a potential threat to va-2

lidity, as some Dockerfiles may not be included in our analysis. However, we3

believe that this is a negligible issue, as the vast majority of Dockerfiles are4

named according to the convention. However, the practices that are captured5

in our taxonomy cover some of those suggested in the official Docker guide-6

lines [2] and as code smells [1]. This means that our finding are an enrichment7

of the existing practices used by developers. Finally, we could measure the8

impact on build time and image size (RQ2) only for a small number of cate-9

gories of changes, and we needed to exclude several of them because we did10

not have enough data points. It is possible that some of the categories with11

fewer changes we could not test in this study have a bigger impact than the12

ones we focused on.13

7 Conclusion and Future Work14

Optimizing the resources used by Dockerfiles and Docker images is one of the15

most important aspects in which developers invest their effort. In this paper,16

we presented an in-depth empirical evaluation of the changes performed by17

developers in the open-source aimed at improving the image size and build18

time of Docker images. First, we extracted a set of improvement changes from19

git repositories, filtering them by combining NLP techniques and manual val-20

idation, to exclude false positives. Then, we annotated the performed changes21

to reduce build time and image size, to finally group them in a taxonomy of22

changes. While our results provide a view of performance-oriented changes in23

Dockerfiles, some limitations remain. Our taxonomy is based on a filtered and24

curated subset of open-source commits, which may not fully represent indus-25

trial practices or all possible optimizations. Additionally, the impact of certain26

changes—such as caching-related ones—can vary depending on the environ-27

ment in which Docker images are built and used (e.g., CI/CD pipelines vs.28

local development). These factors should be taken into account when general-29

izing or applying our findings in practice. As a future direction, we plan to run30

a dedicated study on the impact of the changes we found on both image size31

and build time. We also plan to investigate what effort is needed to perform32

such changes to refine our catalog in a cost-effective perspective.33

8 Data Availability Statement34

To make our results verifiable and replicable, we provide a publicly available35

replication package [20], which contains the results of the tagging and the36

experimental measurements we acquired.37

Title Suppressed Due to Excessive Length 25

Declarations1

Funding. This work was supported by the Italian Government (Ministero2

della Università e della Ricerca, PRIN 2022 PNRR) under the project “RECHARGE:3

Monitoring, Testing, and Characterization of Performance Regressions,” grant4

n. P2022SELA7, funded by European Union – NextGenerationEU.5

6

Ethical Approval. Not applicable.7

8

Informed Consent. Not applicable.9

10

Author Contributions. Giovanni Rosa, Emanuela Guglielmi, Mattia Ian-11

none, Simone Scalabrino, and Rocco Oliveto contributed to the study con-12

ception and design. Material preparation, data collection and analysis were13

performed by Giovanni Rosa, Emanuela Guglielmi, and Mattia Iannone. The14

first draft of the manuscript was written by Giovanni Rosa and all authors15

reviewed and edited the final manuscript. All authors read and approved the16

manuscript.17

18

Conflict of Interest. The authors declare that they have no conflict of in-19

terest.20

21

Clinical Trial Number. Not applicable22

References23

1. hadolint: Dockerfile linter, validate inline bash, written in haskell. https://github.24

com/hadolint/hadolint (2015). [Online; accessed 2-Jun-2022]25

2. Best practices for writing dockerfiles. https://docs.docker.com/develop/26

develop-images/dockerfile_best-practices/ (2023). [Online; accessed 2-Jun-27

2022]28

3. Azuma, H., Matsumoto, S., Kamei, Y., Kusumoto, S.: An empirical study on self-29

admitted technical debt in dockerfiles. Empirical Software Engineering 27(2), 1–2630

(2022)31

4. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE cloud32

computing 1(3), 81–84 (2014)33

5. Bui, Q.C., Laukötter, M., Scandariato, R.: Dockercleaner: Automatic repair of security34

smells in dockerfiles. In: 2023 IEEE International Conference on Software Maintenance35

and Evolution (ICSME), p. To Appear. IEEE (2023)36

6. Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An empir-37

ical analysis of the docker container ecosystem on github. In: 2017 IEEE/ACM 14th38

International Conference on Mining Software Repositories (MSR), pp. 323–333. IEEE39

(2017)40

7. Durieux, T.: Empirical study of the docker smells impact on the image size pp. 1–1241

(2024)42

8. Eng, K., Hindle, A.: Revisiting dockerfiles in open source software over time. In: 202143

IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pp.44

449–459. IEEE (2021)45

9. Henkel, J., Bird, C., Lahiri, S.K., Reps, T.: A dataset of dockerfiles. In: Proceedings of46

the 17th International Conference on Mining Software Repositories, pp. 528–532 (2020)47

https://github.com/hadolint/hadolint
https://github.com/hadolint/hadolint
https://github.com/hadolint/hadolint
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

26 Giovanni Rosa et al.

10. Henkel, J., Bird, C., Lahiri, S.K., Reps, T.: Learning from, understanding, and support-1

ing devops artifacts for docker. In: 2020 IEEE/ACM 42nd International Conference on2

Software Engineering (ICSE), pp. 38–49. IEEE (2020)3

11. Henkel, J., Silva, D., Teixeira, L., d’Amorim, M., Reps, T.: Shipwright: A human-in-the-4

loop system for dockerfile repair. In: 2021 IEEE/ACM 43rd International Conference5

on Software Engineering (ICSE), pp. 1148–1160. IEEE (2021)6

12. Jiang, Q.: Improving performance of docker instance via image reconstruction. In: In-7

ternational Conference on Big Data Intelligence and Computing, pp. 511–522. Springer8

(2022)9

13. Kitajima, S., Sekiguchi, A.: Latest image recommendation method for automatic base10

image update in dockerfile. In: International Conference on Service-Oriented Comput-11

ing, pp. 547–562. Springer (2020)12

14. Ksontini, E., Kessentini, M., Ferreira, T.d.N., Hassan, F.: Refactorings and technical13

debt in docker projects: An empirical study. In: 2021 36th IEEE/ACM International14

Conference on Automated Software Engineering (ASE), pp. 781–791. IEEE (2021)15

15. Landis, J.R., Koch, G.G.: An application of hierarchical kappa-type statistics in the16

assessment of majority agreement among multiple observers. Biometrics pp. 363–37417

(1977)18

16. Lin, C., Nadi, S., Khazaei, H.: A large-scale data set and an empirical study of docker19

images hosted on docker hub. In: 2020 IEEE International Conference on Software20

Maintenance and Evolution (ICSME), pp. 371–381. IEEE (2020)21

17. Macbeth, G., Razumiejczyk, E., Ledesma, R.D.: Cliff’s delta calculator: A non-22

parametric effect size program for two groups of observations. Universitas Psychologica23

10(2), 545–555 (2011)24

18. Rastogi, V., Davidson, D., De Carli, L., Jha, S., McDaniel, P.: Cimplifier: automatically25

debloating containers. In: Proceedings of the 2017 11th Joint Meeting on Foundations26

of Software Engineering, pp. 476–486 (2017)27

19. Rastogi, V., Niddodi, C., Mohan, S., Jha, S.: New directions for container debloat-28

ing. In: Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software29

Transformation, pp. 51–56 (2017)30

20. Rosa, G., Guglielmi, E., Iannone, M., Scalabrino, S., Oliveto, R.: Replication Package for31

“Mining and Measuring the Impact of Change Patterns for Improving the Size and Build32

Time of Docker Images” (2024). https://figshare.com/s/caf2c30a2b8f03c9cf0733

21. Rosa, G., Scalabrino, S., Bavota, G., Oliveto, R.: What quality aspects influence the34

adoption of docker images? ACM Transactions on Software Engineering and Method-35

ology (2023)36

22. Rosa, G., Scalabrino, S., Oliveto, R.: Fixing dockerfile smells: An empirical study. arXiv37

preprint arXiv:2208.09097 (2022)38

23. Skourtis, D., Rupprecht, L., Tarasov, V., Megiddo, N.: Carving perfect layers out of39

docker images. In: 11th USENIX Workshop on Hot Topics in Cloud Computing (Hot-40

Cloud 19) (2019)41

24. Spencer, D.: Card sorting: Designing usable categories. Rosenfeld Media (2009)42

25. Woolson, R.F.: Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials pp. 1–343

(2007)44

26. Wu, Y., Zhang, Y., Wang, T., Wang, H.: Characterizing the occurrence of dockerfile45

smells in open-source software: An empirical study. IEEE Access 8, 34127–34139 (2020)46

27. Zerouali, A., Mens, T., Decan, A., Gonzalez-Barahona, J., Robles, G.: A multi-47

dimensional analysis of technical lag in debian-based docker images. Empirical Software48

Engineering 26(2), 19 (2021)49

28. Zhang, Y., Vasilescu, B., Wang, H., Filkov, V.: One size does not fit all: an empirical50

study of containerized continuous deployment workflows. In: Proceedings of the 201851

26th ACM Joint Meeting on European Software Engineering Conference and Sympo-52

sium on the Foundations of Software Engineering, pp. 295–306 (2018)53

29. Zhang, Y., Zhang, Y., Mao, X., Wu, Y., Lin, B., Wang, S.: Recommending base image54

for docker containers based on deep configuration comprehension. In: 2022 IEEE Inter-55

national Conference on Software Analysis, Evolution and Reengineering (SANER), pp.56

449–453. IEEE (2022)57

30. Zhou, Y., Zhan, W., Li, Z., Han, T., Chen, T., Gall, H.: Drive: Dockerfile rule mining58

and violation detection. arXiv preprint arXiv:2212.05648 (2022)59

	Introduction
	Background and Related Work
	Empirical Study Design
	Empirical Study Results
	Discussion
	Threats to validity
	Conclusion and Future Work
	Data Availability Statement

