Automatically Generating Dockerfiles
via Deep-Learning: Challenges and Promises

Giovanni Rosa, Antonio Mastropaolo, Simone Scalabrino,
Gabriele Bavota and Rocco Oliveto

@giovannipink

University of Molise, Italy

17th International Conference on
( - Software and System Processes
4 14-15 May 2023, MCEC (Melbourne)



Software Containers



85% of

organizations will

adopt containers
by 2025




85% NI #1 Most-Wanted

and

organizations will

adopt containers #1 Most Loved
by 2025 tool




: FROM node:12-alpine :

! I

: RUN apk add --no-cache python2 g++ make:
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: WORKDIR /app : “ BEREE
I 6 COPY . . " ﬁ ﬁ
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: RUN yarn install --production : .4

! I

: CMD ["node", "src/index.js"] :
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Image Container

EXPOSE 3000 here

Dockerfile

Docker in a Nutshell



FROM node:12-alpine

RUN apk add --no-cache python2 g++ make
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[ ]
RUN yarn install --production run

CMD ["node", "src/index.js"]
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ARG RELEASE 0B

ARG LAUNCHPAD_BUILD_ARCH 0B
LABEL org.opencontainers.image.ref.name=ubuntu 0B
————————————————————— LABEL org.opencontainers.image.version=23.04 0B
FROM node:12-alpine
ADD file:6652bceb064b5b28324fcb2db853ca272d2... 26.83 MB
RUN apk add --no-cache python2 g++ .
CMD [*/bin/bash’] 0B HEN

[ ]
RUN yarn install --production b u I Id ru n

CMD ["node", "src/index.js"]

Image Cbntainer

EXPOSE 3000 here
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Writing
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DockerGen: A Knowledge Graph based Approach
for Software Containerization

Ye et. al 2021

Abstract—Docker is the de-facto container technology for soft-  (2) Given a target software, DockerGen infers all the de-
ware *?‘l*l.:::ﬂhym=Mﬂ delivery. A Dockerfile specifies how  pendencies for constructing a runtime environment, including
Lo containerize a system into a Docker image. However, creating 4 pose image offering an OS, language- and system-level
4 Docherle b net troal s reving the dependenies (€82 i, ‘and tool of compaible versions, bused on the
knowledge graph. It determines the workflow of building the
Docker image and generates a Dockerfile for the software.
We evaluate DockerGen by exploiting it to containerize 100
popular software packages of various types. It achieves a 73%
build success rate and a 59% configuration success rate.
m 100 In summary, this work makes the following contributions.
« We extract knowledge from nearly 220 thousand Dockerfiles
and build a Docker domain knowledge graph with over 900
thousand entities and nearly 2,900 thousand relations, .

© developmens 5]

nolog: o
knowledge ,, BY Such as Docyer

by creating a Dockerfile specifying the base image, dependencies,

and the operation workllow. We evaluate DockerGen
software packages of various categories. DockerGen achieves a
73% build success rate and a $9% configuration success rate.
1 i it indicates it is

containerization based on a domain knowledge graph.
index Terms—Docker, Dockerfile, containerization knowledge ~ Software, OSs, Docker artifacts, and relations among them
‘graph, software package, dependency « We propose a knowledge-based approach for software con-

inerization. The approsch generates 4 Dockertile for the
1. INTRODUCTION target software by inferring the dependencies and determin-

ing the construction w
Docker (1) the de-facto contaner techaology (2], ackuges . The cxperiment evluses DockerGen on 100 software pack-

software systems and their dependencies into Docker images ages of various types. The cxperimental results reveal that
for continuous deployments and deliverics. A Docker image it is promising fo aulomate software conainerization with
is usually constructed by executing a Dockerfile that contains domain knowledge.

a sequence of instructions specifying how 1o install and

configure a software system [1]. At runtime, a Docker image 1. BACKGROUND AND MOTIVATION

instantiates one or more instances, i.c., Docker containers. A Dockerfle specifies the workflow of building & Docker

Creating a Docker image for a specific software requires  jmage with a set of domain-specific language (DSL) based
comprehensive domain knowledge, including (1) langusge-  ingtructions. The instructions declare a base image ("FROM'),
and system-level dependencics, (2) compatibilities amOng  execute shell commands ("RUN") to install and configure
software, libraries and operating systems (0S%), and (3) it software, and sel environment variables ("ENV"). The cxample

stalstion and configuration ways for the software and it Dockertie’ (sce Fig. 1) builds & Docker image construct-
dependencies. Without such knowledge, bailding & Docker ing a pyTox ch-based cavironment for developing machine

image is time-consuming and error-pronc (3] learning applications and algorithms. The FROM instructior
In this paper, we propose a knowledge graph-based ap- se image offering the OS C 08
proach to containerizing software systems, namely Docker- Two RUN instructions install and configure some system-

Gen. DockerGen addresses the diversity of software systems leel tools and libraries (line 6-8) and
and runtime environments by exploiting the domain knowledge 15), respectively. Finally, the command “conda
acquired from existing Dockerfiles. in the third RUN instruction installs 3

(1) DockerGen first extracts the knowledge of building  Dockerfile specifies the workflow of building a
Docker im:

s from a large number of Dockerfiles (spproxi-  centric Docker image. The systemv-level tools, librarics, and

mately 220 thousand 5o far) and constructs a Docker domain  language-level dependency (i.c., Anacondas3) are prerequi-
knowledge graph based on a meta-model. sites 0 or associated with the target software, i.e., PyTorch.
§ Wei Chen is the corrspanding sthor it o dockes omfpengianglanacondad-pytorch

978.1.6654-2463.9021/531 00 £2021 IEEE 986
DOI 10.1108/COMPSACS1774.2021.00133
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Abstraci—Docker is the de-facto container technology for sofl- (2) Given a target software, DockerGe infers all the de-
ware system deployment and delivery. A Dockerfile specifies how  pendencies for constructing  runtime environment, including
to containerize a system into a Docker image. However, creating  ; poce image offering an OS, language- and system-level
hirdoparty brarics of dverse sefomurequires compeehersivy  libraies, and tools of compatible versions, based on the
domain knowledge. In this paper, we propose DockerGen to con-  knowledge graph. It determines the workflow of building the
(ainerize saftware packages automatically, DockerGen constructs  Docker image and generates a Dockerfile for the software.

a knowledge graph containing rich knowledge of building Docker  We evaluate DockerGen by exploiting it to containerize 100
images by analyzing nearly 220 thousand Dockerfiles. DockerGen ooy software packages of various types. It achieves a 73%
explots the knowledge graph o containerize the targel soltware

:;‘,ﬂ:":,,:,.ﬂ,,, e e 1 matmaasy, W itk male the follwing Costotions.
software packages of various categories. DockerGen achieves 8, We extract knowledge from nearly 220 thousand Dockerfiles
3% bulld success rate and a S9% configuration sucoess rale.  4ng build a Docker domain knowledge graph with over 900
o thousand entities and nearly 2.900 thousand relations, e.g

ustots)

build success rate and a 59% configuration success rat.

containerization based on a domain knowledge graph.
Index Terms—Docker, Dockerfile, containerization knowledge ~ Software, OSs, Docker artifacts, and relations among them.
graph, software package, dependency « We propose a knowledge-based approach for software con-
tainerization. The approach generates a Dockerfile for the

L. INTRODUCTION target software by inferring the dependencies and determin-

ing the constructi
Docker (1], the de-fucto container techaology (2], packsges , The experimet evalutes DockerGen on 100 software pack-

software systems and their dependencies into Docker images  gges of various types. The cxperimental results reveal that
for continuous deployments and deliverics. A Docker image g js promising to automate software containerization with
is usually constructed by executing & Dockerfile that COMAINS  domain knowledge.

a sequence of instructions specifying how to install and

configure a software system [1). At runtime, a Docker image I1. BACKGROUND AND MOTIVATION

instantiates one or more instances, i.¢., Docker containers. A Dockerfle specifies the workflow of building & Docker
Creating a Docker image for a specific software fequires  jmage with 4 set of domain-specific language (DSL) bused
comprehensive domain kaowledge, including (1) 1angusge-  ingtructions. The instructions declare a base image ("FRON'),
and system-level dependencics, (2) compatibilitics among  execute shell commands (“RUN") to install and configure
software, libraries and operating systems (0Ss), and (3) i~ software, and set environment variables ("ENV"). The example
stallation and configuration ways for the software and its  Dockerfile! (sce Fig. 1) builds a Docker image construct-
dependencies. Without such knowledge, building 8 Docker  ing 4 PyTorch-based environment for developing machine

image is time-consuming and erroe-prone [3]. learning applications and algorithms. The FROM instruction
In this paper, we propose a knowledge graph-based ap- (line 1) specifies the base image offering the OS CentOs

proach to containerizing software systems, namely Docker- 7. Two RUN instructions install and configure some system-

Gen. DockerGen addresses the diversity of software systems  level tools and librarics (line 6-8) and Anacoda3 (line 10-

and runtime environments by exploiting the domain knowledge  15), respectively. Finally, the command “conda &

acquired from existing Dockerfiles. in the third RUN instruction installs orch (line 17). This

(1) DockerGen first extracts the knowledge of building  Dockerfile specifies the workflow of building a
Docker images from a large number of Dockerfles (approxi-  centric Docker image. The system-level tools, libraries, and
mately 220 thousand 5o far) and constructs a Docker domain  language-level dependency (i.c., Anacondas3) are prerequi-
knowledge graph based on a meta-model sites o or associated with the target software, ie., PyToreh

§ Wei Chen is the conrespanding sethor. s ot docher comhpeng iang anaconda-pytorch
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ChatGPT?




Prompt: —
Can you provide a Dockerfile # Uso Dobian  as th base e

using Debian 9 and installing

Golang 1.9.4 via sources? ey R

build-essential \
git

I # Download and extract Go 1.9.4
O a ® RUN wget https://dl.google.com/go/gol.9.4.1linux-amd64.tar.gz \

&& tar -C /usr/local -xzf gol1.9.4.linux-amd64.tar.gz \
&& rm go0l1.9.4.linux-amd64.tar.gz

# Set Go environment variables
ENV GOROOT=/usr/local/go

b u t ENV GOPATH=/go
()

ENV PATH=$GOROOT/bin:$GOPATH/bin: $PATH

# Create a workspace directory for Go projects
RUN mkdir -p $GOPATH/src $GOPATH/bin

@
u I e r ro r # Set the working directory
WORKDIR $GOPATH/src

# Define the entry point
CMD ["bash"]
‘> Regenerate response




What about

state-of-the-art DL models
((,) for code-related tasks?




Phase 1:
Model Construction
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How to represent software
requirements for a Dockerfile?

Natural Language:
Too Broad!




Operating System: “alpine”

Package Manager: “apk”
Package Requirements: [“python3”] E
Download from Sources: FALSE

ENV variables: FALSE O
Build ARGs: FALSE | |

LABEL: TRUE
EXPOSE for ports: TRUE
CMD: TRUE

ENTRYPOINT: FALSE

High-Level Specification



Operating System: “alpine”

Package Manager: “apk”
Package Requirements: [“python3”] E
Download from Sources: FALSE

ENV variables: FALSE O
Build ARGs: FALSE | |

LABEL: TRUE
EXPOSE for ports: TRUE
CMD: TRUE

ENTRYPOINT: FALSE

High-Level Specification



Operating System: “alpine”

Package Manager: “apk”
Package Requirements: [“python3”] E
Download from Sources: FALSE

ENV variables: FALSE O
Build ARGs: FALSE

LABEL: TRUE

EXPOSE for ports: TRUE

CMD: TRUE

ENTRYPOINT: FALSE

High-Level Specification



FROM alpine:3.17 0S:

“alpine3.17”

LABEL maintainer="happy@container.net"

# Install python3
RUN apk add --update --no-cache python3

Pkg. Manager:
((a pkll

COPY .

RUN pip install -r requirements.txt

Pkg. Requirements:
WORKDIR /tiddlywiki “python3”

EXPOSE 8000

High-Level Specification
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Revisiting Dockerfiles in Open Source Software
Over Time

Eng et.

Ab: -Docker is becoming ubiquil with
for ping and i ications. Previous studies have
analyzed Dockerfiles that are used to create container images in
order to better understand how to improve Docker tooling. These
studies obtain Dockerfiles using either Docker Hub or Github.
In this paper, we revisit the findings of previous studies using
the largest set of Dockerfiles known to date with over 9.4 million
unique Dockerfiles found in the World of Code infrastructure
spanning from 2013-2020. We contribute a historical view of the
Dockerfile format by analyzing the Docker engine changelogs and
use the history to enhance our analysis of Dockerfiles. We also
reconfirm previous findings of a downward trend in using OS
images and an upward trend of using language images. As well,
we reconfirm that Dockerfile smell counts are slightly decreasing
meaning that Dockerfile authors are likely getting better at
following best practices. Based on these findings, it indicates that
previous analyses from prior works have been correct in many
of their findings and their suggestions to build better tools for
Docker image creation are further substantiated.
Index Terms—Git, GitHub, Docker

I. INTRODUCTION

Docker, a tool for creating and running programs in con-
tainers consistently across platforms, was initially released
to the public on March 20, 2013 [1], [2]. Ever since its
release, Docker has amassed a considerable following with
2.9 million desktop installations and 7 million Docker Hub
users as reported in July 2020 [3].

The use of container software such as Docker has made ap-
plications easier to deploy, scale, and migrate across platforms.
Furthermore, it has also made development setup simpler
by reducing the amount of time needed to configure an
appropriate environment by bundling the needed configuration
instructions in a Dockerfile which can then be used to create
images for containers.

Because of the proliferation of Docker, this paper secks
to replicate and elaborate on previous studies on Dockerfile
usage using the largest Dockerfile dataset [4] known to date.
This paper has findings, using data between 2013-2020, that
include:

« Discovering that 7.99% of Dockerfiles exist in more than
one distinct repository

« Most repositories overall contain up to 6 Dockerfiles

« Confirmation of previous findings such as JavaScript
being the most popular language of projects that contain

al 2021

Dockerfiles [5], [6] (2016, 2020) and RUN being the most
popular Dockerfile instruction [5]
II. PREVIOUS WORK

In previous work, large collections of Dockerfiles have been
mined from Github and Docker Hub to better understand
Docker use in repositories and to gather insights on popularity,
quality, and possible ways to improve Docker usage.

Mining Github: Cito et al. [5] (2016) focused on analyzing
over 70,000 Dockerfiles in Github within commits up until
October 2016 finding that: most Dockerfiles use heavy-weight
operating systems as a base image; the biggest quality issue of
Dockerfiles is missing version pinning of images; and Dock-
erfiles are not revised often. In another study by Wu et al. [7]
(2020), 6334 projects were selected from Github and analyzed
for Dockerfile smells finding that: 62% of projects selected
have code smells; newer and popular projects have less code
smells; and projects with different languages have discernible
differences in the amount of smells. Also of note is Henkel et
al. [8] who retrieved approximately 178,000 Dockerfiles from
Github to test with rules mined from the Dockerfiles of official
Docker images and found that there should be more tooling
to support developers using Dockerfiles.

Mining Docker Hub: Lin et al. [6] (2020) scraped Docker
Hub and its related GitHub and Bitbucket repositories re-
trieving 434,304 Dockerfiles up until May 2020. They sought
to better understand the Docker ecosystem through Docker
Hub. They concluded that: for base images more programming
runtime images and ready-to-use application images are being
used instead of OS images; there is a declining trend over
the years in Dockerfile smells; and there is an upward trend
of using end of life Ubuntu base images. Additionally, Zhang
et al. [9], [10] selected 2840 projects from Docker Hub to
identify evolutionary patterns of Dockerfiles and its impact on
Dockerfile quality and image build latency. It should be noted
that mining from Docker Hub may not be representative of all
Docker usage as users do not have to push images to Docker
Hub to use Docker and can choose to build and host images
locally or in a private repository.

A. Challenges in Previous Work
All of the above previous work focuses on Docker use in
a project based perspective and involves mining Dockerfiles

9.4\

unique Dockerfiles

from 2013 to 2020

Dockerfile Dataset




Dockerfiles from
the latest commits

Dataset Filtering



Extraction of the

HL specification

Discard Dockerfiles
having invalid or
empty commands

2 Dataset Filtering



Handling duplicated
HL requirements using
Jaccard similarity

HL spec. Dockerfiles

670k
Instances

3 Dataset Filtering
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construction English Dockerfile  Dockerfile
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Fine Tuning
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construction English Dockerfile | Dockerfile
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NOKR Adherence to the input High-Level Specification

" "

os": "alpine",

"pkg _manager": "any",

"requirements": [
"python3"

1,

"uses _env": false,

"uses_arg": false,

"uses label": true,

"uses_expose": true,

"uses cmd": true,

"uses_entrypoint": false,

"download of external packages": false

os": "alpine",

"pkg manager": "any",

"requirements": [
"python3"

1,

"uses _env": false,

"uses_arg": false,

"uses label": true,

"uses_expose": true,

"uses cmd": true,

"uses _entrypoint": false,

"download of external packages": false

Input HLS

Generated/Retrieved HLS

L4Ks

Metric:
Field-by-field
match




- - - . SBERTnet

TS = ;,.
OS 0.92 0.88
Pkg. Manager 0.98
Pkg. Requirements 0.87 0.76
Download from sources 0.82 0.52
ENV variables 0.81 0.17
Build ARGs 0.88 0.17
LABEL 0.87 0.37
EXPOSE for ports 0.80 0.45
CMD 0.74 0.26
ENTRYPOINT 0.84 0.45

Results for RQ1



m Structural similarity between Dockerfiles <I>

DOCKER-FILE

| DOCKER-FROM|  [DOCKER-RUN| | DOCKER-RUN |

FROM ubuntu:latest

[ BASH-COMMAND | I\/I t WX
RUN apt-get update && \ 9 [ubuntu| |latest| [BASH-AND| e rICo

apt-get install -qqy ... |./scripts/custom.sh‘

, | BASH-COMMAND | | BASH-COMMAND |
RUN ./scripts/custom. sh AST
’apt—get update‘ |apt—get install -qqy ‘
edit distance

Parsed AST
(Henkel et. al 2020)

Input Dockerfile



m Structural similarity between Dockerfiles <I>
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Results for RQ2



m Similarity between Docker images <>

Input Dockerfile Docker Image A

FROM golang:1.20-alpine

[ FROM golang:1.20-alpine (

WORKDIR /src

coPY . . build

[ WoRKDIR /src

| copy . .

RUN go mod download % [ RUN go mod download

RUN go build -o /bin/client ./cmd/client { RUN go build -o /bin/client ./cmd/client ‘

Metric:
Percentage of
matching layers

RUN go build -o /bin/server ./cmd/server { RUN go build -o /bin/server ./cmd/server
ENTRYPOINT [ "/bin/server" ] [ ENTRYPOINT [ "/bin/server" ]

Matching
Gen./Retr. Dockerfile Docker Image B SHAs

FROM golang:1.20-alpine

[ FROM golang:1.20-alpine l

WORKDIR /src

COPY . . bUI|d | copy . .

|
|
RUN go mod download % [ RUN go mod download |
|
|

| WORKDIR /src

RUN go build -o /bin/client ./cmd/client [ RUN go build -o /bin/client ./cmd/client

ENTRYPOINT [ "/bin/server" ] [ ENTRYPOINT [ "/bin/server" ]




m Similarity between Docker images .\4
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Not enough training instances

Challenge
#1 Data augmentation
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Writing
Dockerfiles
is challenging

Summary

Natural language T5 Model Generated
requirements Dockerfile

Dockerfile Generation via T5
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[
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Evaluation

T5 model L L =
construction English  Dockerfile | Dockerfile
Only Only & English

T5 achieves slightly better
results than IR ...

@ More resource-consuming

compared to IR

Summary

Generated Dockerfiles
require manual adjustments

Giovanni Rosa
https://giovannirosa.com

What we have learned?

Thank you!



