Automatically Generating Dockerfiles
via Deep-Learning: Challenges and Promises

Giovanni Rosa, Antonio Mastropaolo, Simone Scalabrino,
Gabriele Bavota and Rocco Oliveto

@giovannipink

University of Molise, Italy

17th International Conference on
(- Software and System Processes
4 14-15 May 2023, MCEC (Melbourne)

Software Containers

85% of

organizations will

adopt containers
by 2025

85% NI #1 Most-Wanted

and

organizations will

adopt containers #1 Most Loved
by 2025 tool

: FROM node:12-alpine :

! I

: RUN apk add --no-cache python2 g++ make:

| 1 IIIII
: WORKDIR /app : “ BEREE
I 6 COPY . . " ﬁ ﬁ

! |

: RUN yarn install --production : .4

! I

: CMD ["node", "src/index.js"] :

! I

! I

Image Container

EXPOSE 3000 here

Dockerfile

Docker in a Nutshell

FROM node:12-alpine

RUN apk add --no-cache python2 g++ make

HE
WORKDIR /app . BEREE

COPY . .

[]
RUN yarn install --production run

CMD ["node", "src/index.js"]

Container

EXPOSE 3000 here

Dockerfile

Docker in a Nutshell

ARG RELEASE 0B

ARG LAUNCHPAD_BUILD_ARCH 0B
LABEL org.opencontainers.image.ref.name=ubuntu 0B
————————————————————— LABEL org.opencontainers.image.version=23.04 0B
FROM node:12-alpine
ADD file:6652bceb064b5b28324fcb2db853ca272d2... 26.83 MB
RUN apk add --no-cache python2 g++ .
CMD [*/bin/bash’] 0B HEN

[]
RUN yarn install --production b u I Id ru n

CMD ["node", "src/index.js"]

Image Cbntainer

EXPOSE 3000 here

]

I

I

|

|

I

: WORKDIR /app T “
| 6 corr . . m— m—l>-
I

I

|

|

I

I

|

|

I

Dockerfile

Docker in a Nutshell

FROM node:12-alpine

RUN apk add --no-cache python2 g++ make

! I

! |

! I

! I

! I

! |

: WORKDIR /app : ‘
I 6 COPY . . | ﬁ
: |

I RUN yarn install --production :

! I

: CMD ["node", "src/index.js"] :

! I

! I

Image Container

EXPOSE 3000 here

Dockerfile

Docker in a Nutshell

Writing
Dockerfiles
s challenging

Received Novembe
date of cunent vers

" 30, 2021, sccepted Decemben
lon Januery 7, 2023

" 192021, date of publcaion December 2, 2021,

Developing Docker and Docker-

Compose
Specifications: A Developers’ sy

Time-consuming
Reis et, a021 a Ctivity

computing and Infrastrycy,
have shaped how m,

ure-as-Code (IaC)
any

). supported b
built and deployed, Preyigys research has
issues for some 1 " they come to be, or they haye defyey ation
ehects but notinto technical ones, This pwork aims (o characterize the geiyyer round two particular kings
Of IaC specific, Dockertles and docker.compo, ymi files. We seek to know hoy they can be betrer
supported and therefore 6 cttioners employ. We used an onjine
68 graduate students from 5 5,
1 software developers. The reqylty show that
o+elOping a Dockerfile are perceiveq . time-c . especially
When the tespondents are beginpers with thi flogy. We also found tha solving issues using trig).
and-error approaches s yery developers do not use anciltar,
development as les.

Y 10015 to support the
ng (ICSE)

¥ technologies such as Docker,

identified typica

Of the process of g

¢ on Softwarc EAgin®

1 Confe
ernationa!
EEE/ACM 420d Inter®

2020 IEEE/

B cloud computing, suryey,

Programming languages. wpi

le some aspects and activites
s he process may be e same, others seem 1o pe
. B —from testing 1o debug
rting 3 ok
ding, and SuPPO
ing,
stan
Under

from, .
DevOps Arti

8ing, (0 the error-proneness
Learning

ger feedback loaps [3),
Although there is o
ker the development of ingy
facts for DoC Tew works try to
they may bring
In Particular, there
that many of these
the approaches th
effectively,
In this work, we
Sionals perceive he

air amount of
astructure. spe,

s scarce empirical evidency
£00ls address are worgh, addressing and tha
1t they prescribe are addressing sy issues

. eck insights on how software profes-

Information 5y
tcs; Abstraction:

. program sems

use they do of Docker and Docker-
Fompose and to generyre 1ew hypotheses of how best to
S8 existing challenges,
Data min
ks, there 838 S
CT tools a0d (e thancode. gy WORD!
ABSTRACT use of DevOpE g that supper

e for tools

In the remainder
tic Cheeking
. Stai

{ated o our stuy
Wit the g

for tools and techt
e o o 228

ps, Mini
£, DevOps.

s Docker,

ot sy

loper

of this paper, Section 1 oy

erviews works
 ection I identiiesthe main goglsof e
_—— Rreen and s questions, and Section T e v odology to
e Fommat . Labit 388 T e Wer them. Sections V'and V] hen describe, respectively,
4 e vadation We el P e ot B St o fata handling anq anglysis, offering this w,
Tt A B e Oy et g s
e T the ok g iom 8 e o S
e e ing developers il U hase chalen
and PPt s s) e O
» o Dev o
Tangose

is. Section VI oyeryie
113380406
ot 900,
e s to inge

WS the main thre
ale-based analysis

olsct, binnacle

ork’s main
Seoul Republie
dokorg 1015
doborg1
e
of semas

duce 3 0¢
intro

ats to validity

R e Mmooy i s
2
000 unique JCTION apid ite services ant
aspprosimstelf KL ey [NTRODL“ owth and 2P e ot e e
jtories. racted 3 ockerfles W et et deploy, a0 ctice of

jons, whid
wehure ad Operaons ey

 the words D
end of

actices, i jass et al
both pras em [23]. B¢
etween sytem (23 B8 C0
DevOps. bridge o reduct "
L uild 2 ot ded ge being.
e ad s e and he hangcbeint
ommislo i o sing a change 03 975 g High O eessin.
wo s from coms o duction, while ensuring VR these
somsd st praciccn S0 e o normalproduction UL g deveopers i e
oot found dus oo b on placed ntonor L B cireect 1] Docker 2L 00
ol sndfound 0% evopsacivies B L 1ol CrdeCt il B e
e e v ot s these e 25 fetimes configuring 200 o come s ntegral P
verge, Dockestles 8 G e than those % housands of JERLE)
ey o e DS et el 1]
freque strial Docker nacle can be post-hoc. - een studied T o
that inds alyzer 0O andin 290 lu\o have "Qr‘ tools 0t 0 3 4900 o
e s sod st 0 isting Docker e As sl sy 0% "
The leamed 7 FL when cr ove, ex scape. Ass0MPE L .
thel and do DevOP! of Det artifact
ope souies i ty,so do 8], bs ps
o iy e A Temform (8] bave o
TS st s et o sch
s CONCE! gineering — ERRCof comp ot fore
andits REEE
Software 30 s
e
Gene

e b
artifacts ha
DevOps 5L demic

lly, DevOps
e ceent years 28 arious ¢
ta ot b o e hese st

cived interest

these
ore out of the 1328 workingon e,
mining 27 sions W “‘T‘f m just enough

e Oue e ey lear

e e

Satifacts indic

Received Novembe
date of cunent vers

" 30, 2021, sccepted Decemben
lon Januery 7, 2023

" 192021, date of publcaion December 2, 2021,

Developing Docker and Docker-

Compose
Specifications: A Developers’ sy

Time-consuming
Reis et. a021 aCtIVIty

computing and Infrastrycy,
have shaped how m,

ure-as-Code (IaC)
any

). supported b
built and deployed, Preyigys research has
issues for some 1 " they come to be, or they haye defyey ation
ehects but notinto technical ones, This pwork aims (o characterize the geiyyer round two particular kings
Of IaC specific, Dockertles and docker.compo, ymi files. We seek to know hoy they can be betrer
supported and therefore 6 cttioners employ. We used an onjine
68 graduate students from 5 5,
1 software developers. The reqylty show that
o+elOping a Dockerfile are perceiveq . time-c . especially
When the tespondents are beginpers with thi flogy. We also found tha solving issues using trig).
and-error approaches s yery developers do not use anciltar,
development as les.

Y 10015 to support the
ng (ICSE)

¥ technologies such as Docker,

identified typica

Of the process of g

¢ on Softwarc EAgin®

o
jonal Co
2nd Internat

-\t 420d

20 IEEE/AC)

2020 1E

B cloud computing, suryey,

Programming languages. wpi

l some aspects and activities
s he process may be ghe
. .
orting |
derstanding; and Supp
Unde!

om,

Learning fDreVOPs Arti

facts for Docker

s scarce empirical evidency
that many of these tools addreqy gre Worth addressing and thag
the approaches that they preseribe are addressing such issyes
effectively,

In this work, we

Sionals perceive the

same, others seem 1o pe C h n I C
—from testing 10 debugging, 1o e €rTor-proneness
iger feedback loops [g)

Although there is o fair amoun of
the development of infragyycgype speci
few works wry 1o
they may bring o (he development process
In particular, there c

Information sYSt€
ptics; Abstraction
. program <

eck insights on hoy

software profes.
use they do of

f Docker and Docker-
Tompose and 10 generare
Data i

ok, there 3%
s e

ABSTRACT wse of DEVOPS 00t support
Wit the g0

L state

new hypotheses of how best o
S existing challenges
rethancode | pyWORDS
tools and tec!
it
The curtent S0
ke Docker

1 the remainder of ths paper, Seegion 1 overviews works | e
Jic Checking ed o ourstudy, Section I jgenyer the main goals of (he
evOps, Mining, Stat _—— $arch and its questions, ang SectionIV the methodology 1
gstance f0F 1900 er, De Labic, and TR UERL e er them. Sections Vanq v ghen describe, respectively,
“ oper asitance (0 L e o shavenda K. Lt e
e dev e ation. it pou Refcrence PO i Sapperiog DO A . data handling ang analysis, offering this work-s ‘main
. ,x:-\““““":“w' o el e Vbt w5 o N USA. is. Section VI oyeryie
e el of SO G) Bk Leamig ol onfrnce oS
B wrting DevOps SO R D e of Ko
e chalent opens wrting DVOPS S e S Repulc of Kot O
e pportng developert WL s chslenges 2 e
e Devops asifact, 8 9L L o ingest 9 dokorg
Tangusges 8 DEDT Tt To ddress e L0
e ralebased analysit 102

WS the main threats to valigiry
B s s
e nacle. 0 unigue
of ser e toolset, bin ey
duce =
imtroduce 3 B0
Gattub o

£ software, 30
ON n of 5

000 un DUCTIS

flawitiend | [NTRO

sacted approx
v

VounE 10,202
nd
i e rices 3
and it e e sevies 0
4 growth 39 T i pla . and scal ‘
D ing he bt L o o elepers ot AP S0
over L g ot oL

jons, whid
wehure ad Operaons ey

 the words D
end of

DO b

yatem (231 B8 0
e to reduce 1
ded o seduce the FE0
g and sUPP Jtem and the changs
ansging. 20 T rem
sto g P P s,
o thicd s fromenmmitale R pevop

ality” (11}
e to a syst g high qus ing.
g aring :
o, vl o S S,
ces, ¥ een cOMS)l production. sting, P« rs in these
<t practic v betwe ormal prodac ety e developers in e
o found dui o i itenc. e e ncde bulding, o 2200
<ol o Des0ps s g ey workd
e e v ot s these e 25 frtimes ey conbgurind O o come s ntegral P
ooy o G v e 10 ouced from abermetes (6] Feopers. Mach
g, Dockefles o8 GHELATCL e than those o ousands o deelE L)
"‘q_“ y than e e red o bt peusdtosid o BETE ‘\“ J tensively
freque strial Docker! nacle can be post-hoc. - een studied T o
that inds alyzer 0 DAOEandina o lu\o bt cxist s cont o
e eamed rles snd analyzer 0 inting Docker e e s € "
The leameC ot when e ove, ex scape. As SUTREE ol Par b
thel and do DevOP! of Det ps artifacts
o dentiy Bl e s Terrfore (S, e
fashion & o1 “““)““‘“"‘:u‘lmﬂ 4. ‘TA\:‘""”" such inp
s CONCE! gineering — ERRCof comp ot fore
and its en@H0
Software 30 s
alp
Gene

e b
artifacts ha
DevOps 5L demic

lly, DevOps
e ceent years 28 arious ¢
ta ot b o e hese st

cived interest

cnthese
et at the same e B SO done”
codesod herchore 88 T doprs bed ik v P
mining 27 sions W .Arlmu,-(ma

e Oue e ey lear

e e

Satifacts indic

aemived November 30,2021, accapted
ate of curtent verson ey . 3pee

Ember 19 2021, date of publation December 2,20,

Developing Docker and Docker-

Compose
Specifications: A Developers’ sy

rvey

Reis et, 3| 2021

i € 3 Tecaolo
ledude’s

Reis

30 para s €
a1d Bruno p,

% (FCT) under Prgegt ? Some ol Sty Sl ol s e e
rsters these 1],
ABSTRACT Cloug

have shaped how m,
issues for some

computing and Infrastructure.as-Coge (14C), supported by technotogies sucy, as Docker,
iany software systems are buile ang deploed. Previous research gy e

Pes of LaC specification but o d

o te

atified typical
1Y they come o be, o they hae geluey o™
ghects but no into technical ones, T work aims (0 characterize the gegiyp.
OFIAC specification—Dockerfiiey qng docker-compose ymi fije
o ohported and therefore study alsq yha; approaches and 1001,
duestionnaire o gather ata, The fiygy part of the
on informatics engineering, ang e second one 12
most of the activities of

ation
* around two particular kings
s. We seek (o k

oW how they c;

elopers. The
perceived as time.. especially
also found that solving jssyes using trial.
elopers do not use ancillar,

i85 ology. We
roaches is verv deve
app:
i s,

consuming,
ng (ICSE)

¥ 10015 (0 support the
¢ Enginect
oftware
a1 Confercnce on Sof T cloud computing, survey,
2nd Intermation’
20 [EEE/ACM 4204 Programming languages. Wi 4ome aspects and activities
204 B of the proce others seem 1o pe
. 5
orting ¥
ding, and SuPP
stan
Under
om,

8ing, (0 the error-proneness

facts for Docker

Learning fDreVOPs Arti

ur amount of ancillary tools for

astructure. specif

0 empirically demonstrate

ing

In particular, there is scaree empirical evidency

that many of these tools addressing and thag
© dPproaches that they prescribe e addressing

effectively,

few works try
they may by

address are worth

such issues
tems — In this work, we
Information syt
sics; Abstracton:

eck insights on hoy
Sionals perceive the

software profes.
15 they do of Docker ang [ypeqer,
Tmpose and to generae new hypeypocs: of how best 1o
5 existing challenges
Data i i the remainder of this paper Secrion 11 overviews works
Paper
v e85 ORDS Jic Checking. edtoour study,Section ey g main goals of the
STRACT opst e e KEYW) Ops, Mining, Sta _—— §arch and s questions, and Section 1y the methodology 1o
ABSTR isg s of o techsiques hat R isanes iy Docker,De I g Lt ;'fﬁ\:f.gmmxm:r\ Wer them. Sections V'and V] hen describe, respectively,
i e for ocls o in static o idation rndig e e o b Shvnie e acse 2 Hata handling ang anajysy, offering this work's majp
e ate-ofthe shallow systad)nested m.nnf:\‘_m“.jm.ww Software ERECXS USA s Section VI overviews e main threats o validiry
e ok s lied o shallow FEL Lring s A
ke D lenges n the sl of - ol Repubi o Kt 5 . .
e core R s v 5 e challenges st e B e costcrmers e Vg s
it (s these challenges & pry
OFs U o addess these Sl -
d analysis. To 0 of software,
e bused anabyst, O — JCTION eration of sobvsre, 2
act, BIRNACH gmately 178000 S0 1 INTRODUCT! owth 30 3P4 B o servi
e acted PO L writen'y N P s being,
posior i of Docesles wrten
i L GaldSet g e it
"
e, a0
Dockert

wesddeesed S o

theis
“and scale
1, deploy.

tes
ge () by reducin® BEC
3 challenge (V1Y <UL

actice
s to the

Jpmen o Opersins S
O e wers Devlopment s OP L
ofthe v o

e system (23], Bas# 00
b B o e o s the e
e), sedkstobuld b o peactices tended U ing
e chalene) st 2 et of e -
o address chalente (0 as, 0
" eele collection. T commits

system
i hange 03

s from
feules for Dockerfles

" alectedase
y collected

puality” (11).
g bigh O 0 o,
pmitting e e g e
e ol production, while bl i thes
> . betwe ormal product o e testint. H develope 21, an
s bildiency pacedinto rermel P frwace To s e 0L
G S Tre gese am e Devops ativies ¥ 1[5, Circle
Ao adures, these TS five times 0
) i udes
We crested an a7

dthe
olated

nd conbiguring

= tools su¢
Gold Set. We also

ol past of the

ot DevOps
i i about DEVOPS
ecom 28 B Fe witenabost DErOF
B e esome T
by s ¢
our e sousce Kabera develop © -
ciles in o0 GO0 sands of developert b 33,40 land
the Dockerf 0 better th A of thousa aple, 16] and jdly evolving i
han pimrgh dto s e (16 04 A rapdy evoin
paind s bewse (e, or cxample (13 e o o
ot mdustrial Doc nipnacle anbe el 0L Bave been stadied ©1CH nue o row 950l anbe
GatHub. s sy D Sing Dockerles. B e — oo this incresse oo, like Dod <
he leamed SR eating v, cxiting e evops tools.Part of s L L to deser
e o o DexOps e v cmtom LS i
e ety e e e e e
fashion fiware ¥ seenin e 0 an o such somew ve
) s om0 i 4], and Tl
EPTS Empirical seftr 1) Jekis 11 25
N ONCE! incering — iy of cos u t form
cesc aginecr e
and its e lan
software 3nd 400
el
yoo

e been somewhit 8

evops aiscts e T o hiona
e (2] They 3 s i automatic.
Aing on these,

* Historically, DevOF
i of industeis & ent years

et of th

batat o
s developer

b o e hese st
o tasked wilh v

Tearn just enough £

e that they

i s
s nd

Time-consuming
activity

Technical knowledge
required

Limited
& supporting tools

H""'Pbac

k: C
Baseq on ode C

Ompletiq,
Language Models System for Dockerfifes

P
oo S e o de N
packat anal ' cont incorpary,

i Do
. OF aypami® B oro Sy € Knowle g po 0 OKerhles
o :«;;‘:‘ wing e u\'P“‘:m“ s “oﬂ" ool 53 ety e St cp
s secon®s Eav s, we focus op cug, AP0y,
" and £ " Doty gy 7 €O ompieg ot =
denhe goicon . Lely ol g PSPt o a1 =iy ot b e e
et i Ounplesion gy, 3 system phy ully researcheg. |
Lanag ippet Tt memay 1) Huttpback :,r[hu.y POTtS the depy) ,i».
code 1€ tspletion pyea 8 Baching foypy o PEOE
oves Y ofsgon & oo e Odels 1 g g 10 4 e
< by e ,'i"‘"wdx s ttnicats sy g Eg
e Docker, code o that gy
6 5 oy Ul ol “Ompleion, mach i, 1, R
" o wing |
o 1o il agmeetin® N e e o R——
PP oftwar X 8 o el ko ey,
e at o credt a L
o aring e b VD onfig} 1.1 ary
cc Wi e of S <em v vy cot « Intr, A
mport S u's 6 o L ‘;‘: LoReR e oductiop
i oo
e .8 o compiee P G DS Server virtyy
e ot o 01OF oo ks
x s do 0% N opet for et 05t reduuct,
s ‘ e o
fle. oo SR G oeded T Lpeny ates o, i "™ a0 effcieny g,
ety B oo conENTL an TR otcial Provides 4990 has become gy g7 Utilization, 4,
ng the 5 on 18 gstem- 5 D iners) L I
ding ot s ok o) on the ho, [1]. Ca
Lex Seotry s W€ ° - ith aras. - =d by inerizy “ach contyip,,
et §08 PYC L rating. st 2 16D s co, {2). Container, o
atient 800 hemonstU T g 08 T o’y gound geom VL de (aC). 1ac: ,";:‘;;J Dockerfey 1y, - Pocker are cop.
€ definition g, racess of
2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) B sty e 7 5 e i
g and the iguration jp g, e
Prevention o, - me way
€ Areas are gyl gy o SO [3]. Hop,.
i progress [4) "urh
). such o

used featury jy 1oy
ar,

emergi
¥ req Ing tec]
USIng existing h

DockerGen: A Knowledge Graph based Approach
for Software Containerization

Ye et. al 2021

Abstract—Docker is the de-facto container technology for soft- (2) Given a target software, DockerGen infers all the de-
ware *?‘l*l.:::ﬂhym=Mﬂ delivery. A Dockerfile specifies how pendencies for constructing a runtime environment, including
Lo containerize a system into a Docker image. However, creating 4 pose image offering an OS, language- and system-level
4 Docherle b net troal s reving the dependenies (€82 i, ‘and tool of compaible versions, bused on the
knowledge graph. It determines the workflow of building the
Docker image and generates a Dockerfile for the software.
We evaluate DockerGen by exploiting it to containerize 100
popular software packages of various types. It achieves a 73%
build success rate and a 59% configuration success rate.
m 100 In summary, this work makes the following contributions.
« We extract knowledge from nearly 220 thousand Dockerfiles
and build a Docker domain knowledge graph with over 900
thousand entities and nearly 2,900 thousand relations, .

© developmens 5]

nolog: o
knowledge ,, BY Such as Docyer

by creating a Dockerfile specifying the base image, dependencies,

and the operation workllow. We evaluate DockerGen
software packages of various categories. DockerGen achieves a
73% build success rate and a $9% configuration success rate.
1 i it indicates it is

containerization based on a domain knowledge graph.
index Terms—Docker, Dockerfile, containerization knowledge ~ Software, OSs, Docker artifacts, and relations among them
‘graph, software package, dependency « We propose a knowledge-based approach for software con-

inerization. The approsch generates 4 Dockertile for the
1. INTRODUCTION target software by inferring the dependencies and determin-

ing the construction w
Docker (1) the de-facto contaner techaology (2], ackuges . The cxperiment evluses DockerGen on 100 software pack-

software systems and their dependencies into Docker images ages of various types. The cxperimental results reveal that
for continuous deployments and deliverics. A Docker image it is promising fo aulomate software conainerization with
is usually constructed by executing a Dockerfile that contains domain knowledge.

a sequence of instructions specifying how 1o install and

configure a software system [1]. At runtime, a Docker image 1. BACKGROUND AND MOTIVATION

instantiates one or more instances, i.c., Docker containers. A Dockerfle specifies the workflow of building & Docker

Creating a Docker image for a specific software requires jmage with a set of domain-specific language (DSL) based
comprehensive domain knowledge, including (1) langusge- ingtructions. The instructions declare a base image ("FROM'),
and system-level dependencics, (2) compatibilities amOng execute shell commands ("RUN") to install and configure
software, libraries and operating systems (0S%), and (3) it software, and sel environment variables ("ENV"). The cxample

stalstion and configuration ways for the software and it Dockertie’ (sce Fig. 1) builds & Docker image construct-
dependencies. Without such knowledge, bailding & Docker ing a pyTox ch-based cavironment for developing machine

image is time-consuming and error-pronc (3] learning applications and algorithms. The FROM instructior
In this paper, we propose a knowledge graph-based ap- se image offering the OS C 08
proach to containerizing software systems, namely Docker- Two RUN instructions install and configure some system-

Gen. DockerGen addresses the diversity of software systems leel tools and libraries (line 6-8) and
and runtime environments by exploiting the domain knowledge 15), respectively. Finally, the command “conda
acquired from existing Dockerfiles. in the third RUN instruction installs 3

(1) DockerGen first extracts the knowledge of building Dockerfile specifies the workflow of building a
Docker im:

s from a large number of Dockerfiles (spproxi- centric Docker image. The systemv-level tools, librarics, and

mately 220 thousand 5o far) and constructs a Docker domain language-level dependency (i.c., Anacondas3) are prerequi-
knowledge graph based on a meta-model. sites 0 or associated with the target software, i.e., PyTorch.
§ Wei Chen is the corrspanding sthor it o dockes omfpengianglanacondad-pytorch

978.1.6654-2463.9021/531 00 £2021 IEEE 986
DOI 10.1108/COMPSACS1774.2021.00133

Al-based
Code Assistants

H“mpbac

k: Code ¢
Based o, La"guage

Ompletiop g
Sty
Models ystem for D°Ckerﬁles

Do
Bained ty
tech

i

Ut By cres
10 incorparyre
2 code

is % the

eriles
lanag)

S Cotsventigny
Vention)

Bnology, oltwase oo
o XY, 50 domaipg of
e compleay 2o Hing of pe AL Ho
The proposed cogp gyt 21 im y,.(,,"nm*" have ng iy
et oung system

arverco mE shorp, o systeg g
ea 0 Shortterm megmgr: s
has a high 4 it gy, e

o been fy
at

b Supparts 1,

10 Create apg - 471 tsachip |0

. e corpley u Chniteg
= TR TRy of g 10 POl o OS2 gy e 10
Cywords " xpetiinents g | "ching 1o
DOk, ot gy B that Hugp
<ompleciap, e

CTr——
oo st ter e

ereates logicy) on, cong, ction and ofy
cor fainer;; ficient rege,
Provides up jn g Mpartmentsy (;,, cont ization hnbm,,,,,m‘ s T tilizatiog, Amo,
9 ey Docker! js o ™t eny IRE1S) on the hogt gpepar ™ [1]. Cant, n
is 13 lost of 8 Ontainer;
- e p., .* 1he de facto o, PErAng system ization
T ecuion :ad"wcn. sop n:::‘sen“" “ m’fm::u,z Titing impery g .M:':‘ et eriztion ply] “eemGy
of 08¢ 0 pon, © jied Wi ure cong, SENUCtions it ey o [2]. Con
tient for P ,,wur-““‘w,ﬁ,mm;‘f:anﬁl 5 code (laC), jyee {m":n througl, rh::em Tﬂ” ockerfley 1y Docker are cop
e " developers o . - 203ble definjgio o | ¢ Process o X7
2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) i TARAge infray) 108 files iy cajleq ;
P ¥ing auto, ted scy); TCture configyypy, Afrastryctyy,
Ew technolog, and % and the Prevention o lion i the gyme Pl
Static any me R of humag ¢y, 3).
| e 73l in progrecy [4) 1, h
pletion, 4 4,], such g
f c0de complegzy :y‘:,x‘dy’ used feature iy 1o
DockerGen: A Knowledge Graph based Approach Productivity by e =™ OF Merging gy, 2 S Veloprmeny [5
NI 8 existing knguyqqe 8 50ch as gl
for Software Containerization 30 et compmn

“4¢1p (5. Kug

Ye et. al 2021

Abstraci—Docker is the de-facto container technology for sofl- (2) Given a target software, DockerGe infers all the de-
ware system deployment and delivery. A Dockerfile specifies how pendencies for constructing runtime environment, including
to containerize a system into a Docker image. However, creating ; poce image offering an OS, language- and system-level
hirdoparty brarics of dverse sefomurequires compeehersivy libraies, and tools of compatible versions, based on the
domain knowledge. In this paper, we propose DockerGen to con- knowledge graph. It determines the workflow of building the
(ainerize saftware packages automatically, DockerGen constructs Docker image and generates a Dockerfile for the software.

a knowledge graph containing rich knowledge of building Docker We evaluate DockerGen by exploiting it to containerize 100
images by analyzing nearly 220 thousand Dockerfiles. DockerGen ooy software packages of various types. It achieves a 73%
explots the knowledge graph o containerize the targel soltware

:;‘,ﬂ:":,,:,.ﬂ,,, e e 1 matmaasy, W itk male the follwing Costotions.
software packages of various categories. DockerGen achieves 8, We extract knowledge from nearly 220 thousand Dockerfiles
3% bulld success rate and a S9% configuration sucoess rale. 4ng build a Docker domain knowledge graph with over 900
o thousand entities and nearly 2.900 thousand relations, e.g

ustots)

build success rate and a 59% configuration success rat.

containerization based on a domain knowledge graph.
Index Terms—Docker, Dockerfile, containerization knowledge ~ Software, OSs, Docker artifacts, and relations among them.
graph, software package, dependency « We propose a knowledge-based approach for software con-
tainerization. The approach generates a Dockerfile for the

L. INTRODUCTION target software by inferring the dependencies and determin-

ing the constructi
Docker (1], the de-fucto container techaology (2], packsges , The experimet evalutes DockerGen on 100 software pack-

software systems and their dependencies into Docker images gges of various types. The cxperimental results reveal that
for continuous deployments and deliverics. A Docker image g js promising to automate software containerization with
is usually constructed by executing & Dockerfile that COMAINS domain knowledge.

a sequence of instructions specifying how to install and

configure a software system [1). At runtime, a Docker image I1. BACKGROUND AND MOTIVATION

instantiates one or more instances, i.¢., Docker containers. A Dockerfle specifies the workflow of building & Docker
Creating a Docker image for a specific software fequires jmage with 4 set of domain-specific language (DSL) bused
comprehensive domain kaowledge, including (1) 1angusge- ingtructions. The instructions declare a base image ("FRON'),
and system-level dependencics, (2) compatibilitics among execute shell commands (“RUN") to install and configure
software, libraries and operating systems (0Ss), and (3) i~ software, and set environment variables ("ENV"). The example
stallation and configuration ways for the software and its Dockerfile! (sce Fig. 1) builds a Docker image construct-
dependencies. Without such knowledge, building 8 Docker ing 4 PyTorch-based environment for developing machine

image is time-consuming and erroe-prone [3]. learning applications and algorithms. The FROM instruction
In this paper, we propose a knowledge graph-based ap- (line 1) specifies the base image offering the OS CentOs

proach to containerizing software systems, namely Docker- 7. Two RUN instructions install and configure some system-

Gen. DockerGen addresses the diversity of software systems level tools and librarics (line 6-8) and Anacoda3 (line 10-

and runtime environments by exploiting the domain knowledge 15), respectively. Finally, the command “conda &

acquired from existing Dockerfiles. in the third RUN instruction installs orch (line 17). This

(1) DockerGen first extracts the knowledge of building Dockerfile specifies the workflow of building a
Docker images from a large number of Dockerfles (approxi- centric Docker image. The system-level tools, libraries, and
mately 220 thousand 5o far) and constructs a Docker domain language-level dependency (i.c., Anacondas3) are prerequi-
knowledge graph based on a meta-model sites o or associated with the target software, ie., PyToreh

§ Wei Chen is the conrespanding sethor. s ot docher comhpeng iang anaconda-pytorch

921753100 986
4

978166542463,
DO 10.1108/COMPSAC

Al-based
Code Assistants

..limited to
dependencies
and
code completion

The automated
generation
from scratch
s still an
open challenge

What about
ChatGPT?

Prompt: —
Can you provide a Dockerfile # Uso Dobian as th base e

using Debian 9 and installing

Golang 1.9.4 via sources? ey R

build-essential \
git

I # Download and extract Go 1.9.4
O a ® RUN wget https://dl.google.com/go/gol.9.4.1linux-amd64.tar.gz \

&& tar -C /usr/local -xzf gol1.9.4.linux-amd64.tar.gz \
&& rm go0l1.9.4.linux-amd64.tar.gz

Set Go environment variables
ENV GOROOT=/usr/local/go

b u t ENV GOPATH=/go
()

ENV PATH=$GOROOT/bin:$GOPATH/bin: $PATH

Create a workspace directory for Go projects
RUN mkdir -p $GOPATH/src $GOPATH/bin

@
u I e r ro r # Set the working directory
WORKDIR $GOPATH/src

Define the entry point
CMD ["bash"]
‘> Regenerate response

What about

state-of-the-art DL models
((,) for code-related tasks?

Phase 1:
Model Construction

— input t'On"_--.o ' prediction m
v — ~ pen =4 = EEEEEEEEN
: — 1-‘@1 g 22t
pul } b
Natural language T5 Model Generated
requirements Dockerfile

Dockerfile Generation via T5

How to represent software
requirements for a Dockerfile?

Natural Language:
Too Broad!

Operating System: “alpine”

Package Manager: “apk”
Package Requirements: [“python3”] E
Download from Sources: FALSE

ENV variables: FALSE O
Build ARGs: FALSE | |

LABEL: TRUE
EXPOSE for ports: TRUE
CMD: TRUE

ENTRYPOINT: FALSE

High-Level Specification

Operating System: “alpine”

Package Manager: “apk”
Package Requirements: [“python3”] E
Download from Sources: FALSE

ENV variables: FALSE O
Build ARGs: FALSE | |

LABEL: TRUE
EXPOSE for ports: TRUE
CMD: TRUE

ENTRYPOINT: FALSE

High-Level Specification

Operating System: “alpine”

Package Manager: “apk”
Package Requirements: [“python3”] E
Download from Sources: FALSE

ENV variables: FALSE O
Build ARGs: FALSE

LABEL: TRUE

EXPOSE for ports: TRUE

CMD: TRUE

ENTRYPOINT: FALSE

High-Level Specification

FROM alpine:3.17 0S:

“alpine3.17”

LABEL maintainer="happy@container.net"

Install python3
RUN apk add --update --no-cache python3

Pkg. Manager:
((a pkll

COPY .

RUN pip install -r requirements.txt

Pkg. Requirements:
WORKDIR /tiddlywiki “python3”

EXPOSE 8000

High-Level Specification

+2 years il

>50%

agrees with the
requirements

specification

()
12 N

software developers

Asking Developers’ Opinion

Revisiting Dockerfiles in Open Source Software
Over Time

Eng et.

Ab: -Docker is becoming ubiquil with
for ping and i ications. Previous studies have
analyzed Dockerfiles that are used to create container images in
order to better understand how to improve Docker tooling. These
studies obtain Dockerfiles using either Docker Hub or Github.
In this paper, we revisit the findings of previous studies using
the largest set of Dockerfiles known to date with over 9.4 million
unique Dockerfiles found in the World of Code infrastructure
spanning from 2013-2020. We contribute a historical view of the
Dockerfile format by analyzing the Docker engine changelogs and
use the history to enhance our analysis of Dockerfiles. We also
reconfirm previous findings of a downward trend in using OS
images and an upward trend of using language images. As well,
we reconfirm that Dockerfile smell counts are slightly decreasing
meaning that Dockerfile authors are likely getting better at
following best practices. Based on these findings, it indicates that
previous analyses from prior works have been correct in many
of their findings and their suggestions to build better tools for
Docker image creation are further substantiated.
Index Terms—Git, GitHub, Docker

I. INTRODUCTION

Docker, a tool for creating and running programs in con-
tainers consistently across platforms, was initially released
to the public on March 20, 2013 [1], [2]. Ever since its
release, Docker has amassed a considerable following with
2.9 million desktop installations and 7 million Docker Hub
users as reported in July 2020 [3].

The use of container software such as Docker has made ap-
plications easier to deploy, scale, and migrate across platforms.
Furthermore, it has also made development setup simpler
by reducing the amount of time needed to configure an
appropriate environment by bundling the needed configuration
instructions in a Dockerfile which can then be used to create
images for containers.

Because of the proliferation of Docker, this paper secks
to replicate and elaborate on previous studies on Dockerfile
usage using the largest Dockerfile dataset [4] known to date.
This paper has findings, using data between 2013-2020, that
include:

« Discovering that 7.99% of Dockerfiles exist in more than
one distinct repository

« Most repositories overall contain up to 6 Dockerfiles

« Confirmation of previous findings such as JavaScript
being the most popular language of projects that contain

al 2021

Dockerfiles [5], [6] (2016, 2020) and RUN being the most
popular Dockerfile instruction [5]
II. PREVIOUS WORK

In previous work, large collections of Dockerfiles have been
mined from Github and Docker Hub to better understand
Docker use in repositories and to gather insights on popularity,
quality, and possible ways to improve Docker usage.

Mining Github: Cito et al. [5] (2016) focused on analyzing
over 70,000 Dockerfiles in Github within commits up until
October 2016 finding that: most Dockerfiles use heavy-weight
operating systems as a base image; the biggest quality issue of
Dockerfiles is missing version pinning of images; and Dock-
erfiles are not revised often. In another study by Wu et al. [7]
(2020), 6334 projects were selected from Github and analyzed
for Dockerfile smells finding that: 62% of projects selected
have code smells; newer and popular projects have less code
smells; and projects with different languages have discernible
differences in the amount of smells. Also of note is Henkel et
al. [8] who retrieved approximately 178,000 Dockerfiles from
Github to test with rules mined from the Dockerfiles of official
Docker images and found that there should be more tooling
to support developers using Dockerfiles.

Mining Docker Hub: Lin et al. [6] (2020) scraped Docker
Hub and its related GitHub and Bitbucket repositories re-
trieving 434,304 Dockerfiles up until May 2020. They sought
to better understand the Docker ecosystem through Docker
Hub. They concluded that: for base images more programming
runtime images and ready-to-use application images are being
used instead of OS images; there is a declining trend over
the years in Dockerfile smells; and there is an upward trend
of using end of life Ubuntu base images. Additionally, Zhang
et al. [9], [10] selected 2840 projects from Docker Hub to
identify evolutionary patterns of Dockerfiles and its impact on
Dockerfile quality and image build latency. It should be noted
that mining from Docker Hub may not be representative of all
Docker usage as users do not have to push images to Docker
Hub to use Docker and can choose to build and host images
locally or in a private repository.

A. Challenges in Previous Work
All of the above previous work focuses on Docker use in
a project based perspective and involves mining Dockerfiles

9.4\

unique Dockerfiles

from 2013 to 2020

Dockerfile Dataset

Dockerfiles from
the latest commits

Dataset Filtering

Extraction of the

HL specification

Discard Dockerfiles
having invalid or
empty commands

2 Dataset Filtering

Handling duplicated
HL requirements using
Jaccard similarity

HL spec. Dockerfiles

670k
Instances

3 Dataset Filtering

100k Model Tuning

11Kk Test <>

Resulting Dataset

O
i 560k,

@ Pre-Training

@ 90k....

Fine-Tuning

T5 model
construction

3 pre-training settings

TS5 model 1= L 1=

construction English Dockerfile Dockerfile
Only Only & English

Fine Tuning

T5 model = =

construction English Dockerfile | Dockerfile
Only Only & English

Phase 2:
Model evaluation

2 baselines
= 90k G,

Instances

m» [|3sticsearch

v

| —

AR R

HLS ES node

IR-Baseline 1

B cosine

= similarity N
v — — T
v_ ¢ - v - v -

4y Gy GG

IR-Baseline 1

rl 3 dimensions
]

) 11k lest

Evaluation

NOKR Adherence to the input High-Level Specification

" "

os": "alpine",

"pkg _manager": "any",

"requirements": [
"python3"

1,

"uses _env": false,

"uses_arg": false,

"uses label": true,

"uses_expose": true,

"uses cmd": true,

"uses_entrypoint": false,

"download of external packages": false

os": "alpine",

"pkg manager": "any",

"requirements": [
"python3"

1,

"uses _env": false,

"uses_arg": false,

"uses label": true,

"uses_expose": true,

"uses cmd": true,

"uses _entrypoint": false,

"download of external packages": false

Input HLS

Generated/Retrieved HLS

L4Ks

Metric:
Field-by-field
match

- - - . SBERTnet

TS = ;,.
OS 0.92 0.88
Pkg. Manager 0.98
Pkg. Requirements 0.87 0.76
Download from sources 0.82 0.52
ENV variables 0.81 0.17
Build ARGs 0.88 0.17
LABEL 0.87 0.37
EXPOSE for ports 0.80 0.45
CMD 0.74 0.26
ENTRYPOINT 0.84 0.45

Results for RQ1

m Structural similarity between Dockerfiles <I>

DOCKER-FILE

| DOCKER-FROM| [DOCKER-RUN| | DOCKER-RUN |

FROM ubuntu:latest

[BASH-COMMAND | I\/I t WX
RUN apt-get update && \ 9 [ubuntu| |latest| [BASH-AND| e rICo

apt-get install -qqy ... |./scripts/custom.sh‘

, | BASH-COMMAND | | BASH-COMMAND |
RUN ./scripts/custom. sh AST
’apt—get update‘ |apt—get install -qqy ‘
edit distance

Parsed AST
(Henkel et. al 2020)

Input Dockerfile

m Structural similarity between Dockerfiles <I>

o
—

R s 1

0 | 5 s s

o
Q
e
8 o _
® o
©
= The lower
© § - : 5 .
5 s g is better
< E |

N _ : :

FINE S |

Results for RQ2

m Similarity between Docker images <>

Input Dockerfile Docker Image A

FROM golang:1.20-alpine

[FROM golang:1.20-alpine (

WORKDIR /src

coPY . . build

[WoRKDIR /src

| copy . .

RUN go mod download % [RUN go mod download

RUN go build -o /bin/client ./cmd/client { RUN go build -o /bin/client ./cmd/client ‘

Metric:
Percentage of
matching layers

RUN go build -o /bin/server ./cmd/server { RUN go build -o /bin/server ./cmd/server
ENTRYPOINT ["/bin/server"] [ENTRYPOINT ["/bin/server"]

Matching
Gen./Retr. Dockerfile Docker Image B SHAs

FROM golang:1.20-alpine

[FROM golang:1.20-alpine l

WORKDIR /src

COPY . . bUI|d | copy . .

|
|
RUN go mod download % [RUN go mod download |
|
|

| WORKDIR /src

RUN go build -o /bin/client ./cmd/client [RUN go build -o /bin/client ./cmd/client

ENTRYPOINT ["/bin/server"] [ENTRYPOINT ["/bin/server"]

m Similarity between Docker images .\4

— —— —_—

1.0

0.8
! !

0.6

0.4

0.2
|

Percentage of matching layers

—_—

|
[TTTT]

T5
suuey ES

Results for RQ3

0.0
!

4!_

. SBERTnet

@ |5 achieves slightly better
results than IR ...

@,

Summary

@ |5 achieves slightly better
results than IR ...

More resource-consumin
:k Ch D 5

compared to IR

Summary

Generated Dockerfiles
require manual adjustments

What we have learned?

&2

% Not enough training instances
5

Challenge
#1

Not enough training instances

Challenge
#1 Data augmentation

&

A different training procedure

? must be used
X

Challenge
#H2

o

oO

A different training procedure

? must be used
X

Challenge g Different stopping
59 criterion

g Dockerfile abstractions

Writing
Dockerfiles
is challenging

Summary

Natural language T5 Model Generated
requirements Dockerfile

Dockerfile Generation via T5

rl 3 dimensions
[

11K e

Evaluation

T5 model L L =
construction English Dockerfile | Dockerfile
Only Only & English

T5 achieves slightly better
results than IR ...

@ More resource-consuming

compared to IR

Summary

Generated Dockerfiles
require manual adjustments

Giovanni Rosa
https://giovannirosa.com

What we have learned?

Thank you!

