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How to measure Dockerfile quality?
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L. INTRODUCTIO!

Packaging software into containers has become a common
practice during the last years [2]. In particular, Docker con-
tainers are a popular schema to provision multiple software
applications on a single host. A container is a running image,
which includes its own system libraries, configuration files,
and software [17], providing support for both Linux-based
and other operating systems [18], [24]. Docker allows for
the creation of registries, providing a common place to share
Docker images. With more than 1.6M images (October 2018),
Docker Hub is one of the largest of such registries

Tmages in Docker Hub are organized in repositories, each
one providing a set of versioned Docker images. Repositories
can be private or public, which in turn are split into offcial an
community repositories. An official repository contains public
and certified images from recognized vendors (e.g., Elastic-
Search, Debian, Alpine). Tmages in official repositories are
frequently used as the base for other Docker images, since they

A preliminary version of this paper was published on arXiv [19]
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containers, in the sense that using container images provides
isolation from evolving dependznue: and changes in packages
that may break working systems. This is a strong incentive
10 stick to an outdated image because it “just works”, since
upgrading (o new versions of container images always involves
some risk. Thus, deployers are always balancing their need to
update to new images with vulnerability and bug fixes, and the
risk of breaking a working system due to unexpected changes
in the upgraded packages.
is compromise has been widely reported in literature.
According 10 a 2015 survey by Red Hat and Forrester [3],
security is a top concem when deciding whether to deploy
containers. A 2016 survey by DevOps.com and RedMonk [9]
revealed that users who are more concerned by image secu-
ity focused on scanning simple Common Vilnerabilities and
Exposures (CVE) on the operating system. A 2017 survey
by Anchore.io focused on the landscape of practices being
deployed by container users [1]. One of the questions was:
“Other than security, what are the other checks that you
perform before running application containers?” The top
answers related to software package were: required packages
(~ 40% of the answers); presence of bugs in major third-party
software (~ 33%); and verifying whether third party software
versions are up-to-date (~ 27%).
To support deployers of containers in this everyday com-
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FROM python:latest DL3007: Pin the version explicitly to a release tag

MAINTAINER Mark Red <mark.red@example.com> DL4000: MAINTAINER is deprecated

RUN apt-get update -y &8& \ DL3008: Pin versions in apt get install.

apt-get install -y default-jdk DL3009: Delete the apt-get lists after installing something

RUN python -m pip install --upgrade pip DL3059: Multiple consecutive 'RUN' instructions

vV VVV

DL3013: Pin versions in pip

WORKDIR
/app DL3042: Avoid use of cache directory with pip

COPY requirements.txt ./

RUN pip install -r requirements.txt —'D DL3042: Avoid use of cache directory with pip

COPY . -
EXPOSE 5000

CMD ["python", "-m", "server"]

Smells in Dockerfiles
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Abstract—Docker allows packaging an application with its

i If-contained unit (a so-called
container), which can be used for software development and to
run the i on any system. files are i
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(Le., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Kaywords-empirical ssftware ing; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a

ali Zumberi®, Harald C. Gall*

T IBM T. J. Watson Research Center
Yorktown Heights, NY, USA
witternj @us.ibm.com

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositorics. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ccosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developes
develop better support to improve quality and drive ecosy
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of

Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.
Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or

ies), acc g for 28.6% of quality issucs. We also

self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(12C) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of cnabling reproducibil-

978-1-5386-1544-7/17 $31.00 © 2017 [EEE
DOI 10.1109/MSR.2017.67

built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to wam developers
carly about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

Cito

et. al
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Over Time

Kalvin Eng
Department of Computing Science
University of Alberta
Edmonton, Canada
kalvin.eng @ualberta.ca

Ab; Docker is i iqui with inerization
for ping and deploying icati Previous studies have
analyzed Dockerfiles that are used to create container images in
order to better understand how to improve Docker tooling. These
studies obtain Dockerfiles using either Docker Hub or Github.
In this paper, we revisit the findings of previous studies using
the largest set of Dockerfiles known to date with over 9.4 million
unique Dockerfiles found in the World of Code infrastructure
spanning from 2013-2020. We contribute a historical view of the
Dockerfile format by analyzing the Docker engine changelogs and
use the history to enhance our analysis of Dockerfiles. We also
reconfirm previous findings of a downward trend in using OS
images and an upward trend of using language images. As well,
we reconfirm that Dockerfile smell counts are slightly decreasing
meaning that Dockerfile authors are likely getting better at
following best practices. Based on these findings, it indicates that
previous analyses from prior works have been correct in many
of their findings and their suggestions to build better tools for
Docker image creation are further substantiated.

Index Terms—Git, GitHub, Docker

I. INTRODUCTION

Docker, a tool for creating and running programs in con-
tainers consistently across platforms, was initially released
to the public on March 20, 2013 [1], [2]. Ever since its
release, Docker has amassed a considerable following with
2.9 million desktop installations and 7 million Docker Hub
users as reported in July 2020 [3].

The use of container software such as Docker has made ap-
plications easier to deploy, scale, and migrate across platforms.
Furthermore, it has also made development setup simpler
by reducing the amount of time needed to configure an
appropriate envi by bundling the needed confi i
instructions in a Dockerfile which can then be used to create
images for containers.

Because of the proliferation of Docker, this paper seeks
to replicate and elaborate on previous studies on Dockerfile
usage using the largest Dockerfile dataset [4] known to date.
This paper has findings, using data between 2013-2020, that
include:

Discovering that 7.99% of Dockerfiles exist in more than
one distinct repository

Most repositories overall contain up to 6 Dockerfiles
Confirmation of previous findings such as JavaScript
being the most popular language of projects that contain

Eng et. al
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Dockerfiles [5], [6] (2016, 2020) and RUN being the most
popular Dockerfile instruction [5]
II. PREVIOUS WORK

In previous work, large collections of Dockerfiles have been
mined from Github and Docker Hub to better understand
Docker use in repositories and to gather insights on popularity,
quality, and possible ways to improve Docker usage.

Mining Github: Cito et al. [5] (2016) focused on analyzing
over 70,000 Dockerfiles in Github within commits up until
October 2016 finding that: most Dockerfiles use heavy-weight
operating systems as a base image; the biggest quality issue of
Dockerfiles is missing version pinning of images; and Dock-
erfiles are not revised often. In another study by Wu et al. [7]
(2020), 6334 projects were selected from Github and analyzed
for Dockerfile smells finding that: 62% of projects selected
have code smells; newer and popular projects have less code
smells; and projects with different languages have discernible
differences in the amount of smells. Also of note is Henkel et
al. [8] who retrieved approximately 178,000 Dockerfiles from
Github to test with rules mined from the Dockerfiles of official
Docker images and found that there should be more tooling
to support developers using Dockerfiles.

Mining Docker Hub: Lin et al. [6] (2020) scraped Docker
Hub and its related GitHub and Bitbucket repositories re-
trieving 434,304 Dockerfiles up until May 2020. They sought
to better understand the Docker ecosystem through Docker
Hub. They concluded that: for base images more programming
runtime images and ready-to-use application images are being
used instead of OS images; there is a declining trend over
the years in Dockerfile smells; and there is an upward trend
of using end of life Ubuntu base images. Additionally, Zhang
et al. [9], [10] selected 2840 projects from Docker Hub to
identify evolutionary patterns of Dockerfiles and its impact on
Dockerfile quality and image build latency. It should be noted
that mining from Docker Hub may not be representative of all
Docker usage as users do not have to push images to Docker
Hub to use Docker and can choose to build and host images
locally or in a private repository.

A. Challenges in Previous Work

All of the above previous work focuses on Docker use in
a project based perspective and involves mining Dockerfiles

“Version pinning smell
s the biggest quality issue
[...]
there is a declining trend of
Dockerfile smells™
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How do developers fix
Dockerfile smells?
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- RUN apt-get install -y \

curl=7.x \

git \

& rm -rf /var/lib/apt/lists/*

RUN apt-get install -y \
curl=7.x% \

& rm —-rf /var/lib/apt/lists/x

smelly

RUN apt-get install -y \
curl=7.x \
git \
&& rm -rf /var/lib/apt/lists/x*

smelly

not smelly

RUN apt-get install -y \
curl=7.x \
git=2.23 \
&& rm -rf /var/lib/apt/lists/x*

not smelly
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DL3006

José Lorenzo Rodriguez edited this page on 4 Feb 2018 - 5 revisions

Always tag the version of an image explicitly.

Problematic code:

FROM debian DL3008

/‘ Jeroen de Bruijn edited this page on 20 Oct 2019 - 3 revisions
Correct code:

Pin versions in apt get install.

k FROM debian:jessie

1 Problematic code:

FROM busybox
RUN apt-get install python

Most frequent Rule-based
and fixed smells  Refactoring tool

Correct code:

FROM busybox
RUN apt-get install python=2.7
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