Assessing and Improving
the Quality of Docker Artifacts

Giovanni Rosa
University of Molise, Italy

Advisors: Rocco Oliveto and Simone Scalabrino

ICSME "22 Doctoral Symposium - Oct 4th 2022 ICSME -

Limassol, Cyprus 2022

#1 Most-Wanted

and

#1 Most Loved

tool

Developer
Survey

Why Docker?

FROM node:12-alpine

RUN apk add --no-cache python2 g++ make

! |

! |

! |

! I

! |

! | ‘ 1
|

| ° WORKDIR /app 1 q ‘ q 11

I 6 COPY . . |

: |

I RUN yarn install --production :

! |

: CMD ["node", "src/index.js"] :

! I

! |

Image Container

EXPOSE 3000 here

Dockerfile

Docker in a nutshell

FROM node:12-alpine

RUN apk add --no-cache python2 g++ make

1
WORKDIR /app ‘ EEE
copy . . m— . 4 —

[]
RUN yarn install --production b u I Id ru n

CMD ["node", "src/index.js"]

Image Container

EXPOSE 3000 here

Dockerfile

Docker in a nutshell

FROM node:12-alpine
RUN apk add --no-cache python2 g++ make

|

|

1

|

|

|

: WORKDIR /app
I COPY . .
|

1

|

|

|

1

|

|

RUN yarn install --production

CMD ["node", "src/index.js"]

Container

EXPOSE 3000 here

Dockerfile

Docker in a nutshell

FROM node:12-alpine
RUN apk add --no-cache python2 g++ make

WORKDIR /app

i COPY . . E q .‘4
E RUN yarn install --production i b u i I d
i CMD ["node”, "src/index.js"] i I mage COnta | ner

EXPOSE 3000 here

Dockerfile

Docker in a nutshell

= Writing a
/\\7 Dockerfile may

| = seem simple
A’/L

2020 IE

#/ACM 42nd International Conference on Software Engineering (IC!

Learning from, Understanding, and Supporting
DevOps Artifacts for Docker

Jordan Henkel
University of Wisconsin-Madison, USA
jjhenkel@cs.wisc.edu

Shuvendu K. Lahiri
Microsoft Research, USA
Shuvendu Lahiri@microsoft.com

ABSTRACT
With the growing use of DevOps tools and frameworks, there is an
increased need for tools and techniques that support more than code.

The current state-of-the-art in static developer assistance for tools
like Docker is limited to shallow syntactic validation. We identify
three core challenges in the realm of learning from, understanding
and supporting developers writing DevOps artifacts: (i) nested
lang
of semantic rule-|
introduce a toolset, binnacle, that enabled us to ingest

ages in DevOps artifacts, (i) rule mining, and (iii) the lack

ased analysis. To address these challenges we
900,

GitHub repositories
Focusing on Docker, we extracted approximately 1
ind also identified a Gold Set of Docke:
Docker experts. We addressed challenge (i) by reducing the numb,
of effectively uninterpretable nodes in our ASTs by over 80%

000 unique

Dockerfiles, fles written by

i
a technique we call phased parsing. To address challenge (ii), we

1 a novel rul g capable of recovering
this

e able to recover 16 new rules that were

two-thirds of the rules in a benchmark we curated. Throu
automated mining, we w
not found during manual rule collection. To address challenge (iii).
we manually col
the files in the Gold Set. These rules encapsulate best practices, avoid

ected a set of rules for Dockerfiles from commits to

docker build failures, and improve image size and build latency.
We created an analyzer that used these rules, and found that, on

average, Dockerfiles on GitHub violated the rules five times more
frequently than the Dockerfiles in our Gold Set. We also found
that industrial Dockerfiles fared no better than those sourced from
GitHub.

The learned rules and analyzer in binnacle can be used to aid
dev

fashion to identify issues in, and to improve, existing Dockerfiles

elopess in the IDE when creating Dockerfiles, and in a post-hoc

CCS CONCEPTS

. and its i ing — Empirical software valida-
tion: General programming languages; « Theory of computation

ade or distribat

ice sl the full citat

nghts for comy by others than

with credit i per
stribute to lists, req

E 20, May 2
Er)

Christian Bird
Microsoft Research, USA
Christian Bird@microsoft.com

Thomas Reps
University of Wisconsin-Madison, USA
reps@cs.wisc.edu

— Program semantics; Abstraction; + Information systems —

Data mining
KEYWORDS
Docker, DevOps, Mining, Static Checking

ACM Reference Format:
Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas Reps.
Learning fram, Understanding, and Supporting DevOps Artifacts for Docker

42nd International Conference on Software
23-29, 2020, Seou, Republic of Korea

hitps.//doi.org/10.1145/3577811.3380406

1 INTRODUCTION

With the continued growth and rapid iteration of software, an
increasing amount of attention is being placed on services and
infrastructure to enable developers to test, deploy, and scale their
applications quickly. This situation has given rise to the practice of
DevOps, a blend of the words Development and Operations, which
seeks to build a bridge between both practices, including deploy-
ing, managing, and supporting a software system [23]. Bass ef al.
define DevOps as, the “set of practices intended to reduce the time
between committing a change to a system and the change being
placed into normal production, while ensuring high quality” [11]
DevOps activities include building, testing, packaging, releasing,

configuring, and monitoring software. To aid developers in these
processes, tools such as TravisCl [9], CircleCl [1], Dockes [2], and
Kubernetes [6], have become an integral part of the daily workflow
of thousands of developers. Much has been written about DevOps
(see, for example, [16] and [22]) and various practices of DevOps
, 31, 31-33, 40)
us and rapidly evolving land-
x-

have been studied extensively [20, 2
DevOps tools exist in a heter

grow in scale and co

increase in complexity can be
seen in the input formats of DevOps tools: many tools, like Docker
[1]. Jenkins [4], and Terraform [8], have custom DSLs to describe
their input formats. We refer to such input files as DevOps artifacts
ted

ve

Historically, DevOps artifacts have been somewhat neg
in terms of industrial and academic research (though they b
ars [25]). Th
code, and therefore out of the re;
mining and analysis, but at the same time, these artifacts are com-

v are not “traditional”

received interest in recent y

of various efforts in automatic

plex Our discussions with developers tasked with working on these
artifacts indicate that they learn just enough to “get the job done”

Henkel et. al 2020

Limited
developer
assistance

Received January 7, 2020, accepted February 4, 2020, date of publication February 13, 2020, date of current version February 27, 2020,

Digitad Obyect Liewnifier 10, 1103/ ACCES s0

Characterizing the Occurrer
Smells in Open-Source Soft
An Empirical Study

Coeresponding authar: Yang Zhang (yasgzhang1 5@ nudt edu cn)

This work was supparted in part by the Program of a New Generatica of Aff
Foundation of PDL under Grant 61421 10150204, aad in part}

ABSTRACT Dockerfile plays an important role in the
many Dockerfile codes are infected with smells in prag
smells in open-source software can benefit the practice ¢
this paper, we perform an empirical study on a large datd
insights into the occurrence of Dockerfile smells, inclug
correlation with project characteristics. Our results show
and there exists co-occurrence between different types of
analysis, when controlled for various variables, we sti
between Dockerfile smells occurrence and project chi
implications for software practitioners.

INDEX TERMS Docker, Dockerfile smells, Open-sourg

I. INTRODUCTION

“There are over one million Dockerfil
not all Dockerfiles are created equall,

on GitHub today, b
— Tibor Vass'

Docker?, as one of the most popular containerization tool
enables the encapsulation of software packages into co
tainers [1]. Docker allows packaging an application with |
dependencies and exccution environment into a standag
ized, sclf-contained unit, which can be used for softwa
development and to run the application on any system [1
Since inception in 2013, Docker containers have gainf
32,000+ GitHub stars and have been downloaded 105B
times’. The “Annual Container Adoption™ n:pon4 found th
79% of companies chose Docker as their primary contain
technology. The contents of a Docker container are defined |

The associate edifor coordinating the review of this manuscript §

appeoving it for publication was Raberto N

hitps/iwaw:

one

omvblagfintro-guide-to-dockerfile- best- practices

hitps:/fwww.d omicampany. 2 ember 2019

' hitps-/iportwoex com!.

17-container-a

option-survey/

VOLUME & 2000 TS work s Bomsed under 3 Creative Cemmans Anduticn 408

Wu et. al 2020

Revisiting Dockerfiles in Open Source Software
Over Time

Kalvin Eng
Department of Computing Science
University of Alberta
Edmonton, Canada
kalvin.eng @ualberta.ca

Abstract—Docker is i iquif with

for ping an i lications. Previous studies have
analyzed Dockerfiles that are used to create container images in
order to better understand how to improve Docker tooling. These
studies obtain Dockerfiles using either Docker Hub or Github.
In this paper, we revisit the findings of previous studies using
the largest set of Dockerfiles known to date with over 9.4 million
unique Dockerfiles found in the World of Code infrastructure
spanning from 2013-2020. We contribute a historical view of the
Dockerfile format by analyzing the Docker engine changelogs and
use the history to enhance our analysis of Dockerfiles. We also
reconfirm previous findings of a downward trend in using OS
images and an upward trend of using language images. As well,
we reconfirm that Dockerfile smell counts are slightly decreasing
meaning that Dockerfile authors are likely getting better at
following best practices. Based on these findings, it indicates that
previous analyses from prior works have been correct in many
of their findings and their suggestions to build better tools for
Docker image creation are further substantiated.

Index Terms—Git, GitHub, Docker

I. INTRODUCTION

Docker, a tool for creating and running programs in con-
tainers consistently across platforms, was initially released
to the public on March 20, 2013 [1], [2]. Ever since its
release, Docker has amassed a considerable following with
2.9 million desktop installations and 7 million Docker Hub
users as reported in July 2020 [3].

The use of container software such as Docker has made ap-
plications easier to deploy, scale, and migrate across platforms.
Furthermore, it has also made development setup simpler
by reducing the amount of time needed to configure an
appropriate environment by bundling the needed configuration
instructions in a Dockerfile which can then be used to create
images for containers.

Because of the proliferation of Docker, this paper seeks
to replicate and elaborate on previous studies on Dockerfile
usage using the largest Dockerfile dataset [4] known to date.
This paper has findings, using data between 2013-2020, that
include:

Discovering that 7.99% of Dockerfiles exist in more than
one distinct repository

Most repositories overall contain up to 6 Dockerfiles
Confirmation of previous findings such as JavaScript
being the most popular language of projects that contain

Abram Hindle
Department of Computing Science
University of Alberta
Edmonton, Canada
abram.hindle @ualberta.ca

Dockerfiles [5], [6] (2016, 2020) and RUN being the most
popular Dockerfile instruction [5]
II. PREVIOUS WORK

In previous work, large collections of Dockerfiles have been
mined from Github and Docker Hub to better understand
Docker use in repositories and to gather insights on popularity,
quality, and possible ways to improve Docker usage.

Mining Github: Cito et al. [5] (2016) focused on analyzing
over 70,000 Dockerfiles in Github within commits up until
October 2016 finding that: most Dockerfiles use heavy-weight
operating systems as a base image; the biggest quality issue of
Dockerfiles is missing version pinning of images; and Dock-
erfiles are not revised often. In another study by Wu et al. [7]
(2020), 6334 projects were selected from Github and analyzed
for Dockerfile smells finding that: 62% of projects selected
have code smells; newer and popular projects have less code
smells; and projects with different languages have discernible
differences in the amount of smells. Also of note is Henkel et
al. [8] who retrieved approximately 178,000 Dockerfiles from
Github to test with rules mined from the Dockerfiles of official
Docker images and found that there should be more tooling
to support developers using Dockerfiles.

Mining Docker Hub: Lin et al. [6] (2020) scraped Docker
Hub and its related GitHub and Bitbucket repositories re-
trieving 434,304 Dockerfiles up until May 2020. They sought
to better understand the Docker ecosystem through Docker
Hub. They concluded that: for base images more programming
runtime images and ready-to-use application images are being
used instead of OS images; there is a declining trend over
the years in Dockerfile smells; and there is an upward trend
of using end of life Ubuntu base images. Additionally, Zhang
et al. [9], [10] selected 2840 projects from Docker Hub to
identify evolutionary patterns of Dockerfiles and its impact on
Dockerfile quality and image build latency. It should be noted
that mining from Docker Hub may not be representative of all
Docker usage as users do not have to push images to Docker
Hub to use Docker and can choose to build and host images
locally or in a private repository.

A. Challenges in Previous Work

All of the above previous work focuses on Docker use in
a project based perspective and involves mining Dockerfiles

Eng et. al 2021

Dockerfile smells

)&
GEV

What about quality?

A Study of Security Vuln(

Rui Shu, Xiaohui G
North Carolina
Raleigh, North

{rshu, xgu, whe

ABSTRACT

physi
nal virtual ma

n of the Docker
of official and

ages sate a
sis (DIVA) fram
and analy

t been up
s commonly
find

i and

1. INTRODUCTION

er abstraction

for run ple appli

vide s (H
pa

Similar to em virtualizatior

lated runtir and

an applicat

deploy many instances o

Containers wrap system
needed to support the targ

ing

T 2017 ACM. ISBN 078-1-4503-4523- 1/1703 . $15.00

‘dx.doi. 10.1145/3029806.3029832

Shu et. al 2017

;

2020 |IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

An Empirical Study of Build Failures in the Docker Context

Yiwen Wu*
National University of Defense Technology, China
wuyiwenl4@nudt.edu.cn

Tao Wang
National University of Defense Technology, China
taowang2005@nudt.edu.cn
ABSTRACT
Docker containers have become the de-facto
Docker bui
into troubl,

the rate at zations fail. However, little
is known about the frequency and fix effort of failures that occur

ndustry standard
s often break, and a large amount o

efforts are put

broken builds. Prior studies have evaluated

n large orga

in Docker builds of open-source projects. This paper provides a

first attempt to present a preliminary study on 8! 6 Docker

builds from ojects hosted on GitHub, Using

828 open-source

the Docker build data, we measure the frequency of broken builds

ion of

and report their fix time.
Docker build failures acros:

urthermore, we explore the evolut
s time. Our findings help to characterize

and understand Docker build failures and motivate the need for
rical evidence.

collecting more en

KEYWORDS

Docker, Build failure, Open-source

d Huain
n the Docker Context. In

n Wan

are Repositories (MSR

f Korea. New York, NY

ACH A.5 pages. b
1145/3379597.3387483

'RODUCTION
Docker is one of the most popular containerization tools in current

DevOps practice. It enables the encapsulation of software packages

into containers and can run on any system [1]. Since inception in
13, Docker containers have been downloaded 130B+ times’. The

"Annual Container Adoption” report® found that 79% of companies

chose Docker as the:

primary container technology

ence of Docker, many stud-

With the widespread use and infl

ies have been recently conducted to investigate its ecosystem [3),

https://www: docker com

portworx com ool

*Both are first authors and contrib his work

Permission to m or hard coples of

opyrights for compo
Abstracting with cre
o ned

76

ng Zhang*
National University of Defense Technology, China
yangzhangl5@nudt.edu.cn

Huaimin Wang
National University of Defense Technology, China
hmwang@nudt edu.cn

iguration
red a lot of great finding

nplications to developers, but were not
gned to look into the details of Docker builds. Building is crucial
software developm

which automates the proces

by which sources are compiled, linked, tested, packaged, and trans

bre

(i, fail), and although this is not expected, broken builds can help

developers to ide lems early before deliver

g products to

pro
end-users. Recently, the frequency and
quantified in many contexts, e.g, C++ and Java builds [7]

mpact of build failures have

2], and Continuous Integration (CI) builds [4, 9, 11]
However, to the best of our knowledge, little is known about the

re frequency and fix effort of builds in the Docker context

To fill the gap in understandi
frequency, fix rt, and their evolution), we present an empirical
study o 086 Docker builds from 3,828 GitHub op
swer three Res

Docker build failures (including

projects. More specifically, we attempt to

Questions (RQs) in this paper

« RQ1: (Frequency) How often do Docker builds fail? We find
that the overall b

failure rate in the Docker context is 17.8%

e at least
ted with a

and most of Docke in our dataset ha

one broken build. Frequer

ojects (

tly-built p

ojects are associ

low ratio of broken builds
RQ2: (Fix effort) How long does it take to fix Docker build
failures? Broken Docker builds have a median fix time of 44.2

.

our study context. F

each Docker project, more

uild failures are related to longer fix time.
RQ3: (Evolution) How do failures frequency and fix effort
evolve across time? Overall, the failure rate and fix time of

.

Docker builds fluctuate and gradually increase across time.

zed as follows

Paper organization. The rest of this paper is org;

Section 2 describes the study setup. Section 3 presents our study re-

sults. Section 4 outlines the res da and Section 5 discusses

gen

rch 3y
the threats to validity. Finally, Section 6 concludes the paper

2 STUDY SETUP
Figure 1 gives an overview of our study. Based on the RQs, we

collect the Docker build data from thousands of selected GitHub
projects, ar :

erform quantitative studies on

Data sources. Our data collection invol '
sources: (1) GitHub data, ie., projects, using the Google BigQuery*
and (2) Docker Hub data, ie., Docker builds, using the Docker

Hub

g two types of

R

PL Docker Hub is Docker's cloud-based registry, containing

Wu et. al 2021

Security
vulnerabilities

Build reliability
issues

What about quality?

What we can do to improve
the quality of Dockerfiles?

<>
o

Step 1:
Improving quality by fixing

Dockerfile smells

Step 1:
Improving quality by fixing

Dockerfile smells

@ Code smells are not the only factor
measuring quality

How do
Dockerfile quality %
is perceived by

developers?

What about the
% aspects related
to the Docker

image quality?

Step 2:
Quality Features impacting on the adoption

of a Docker image

What are the quality aspects of a Docker
image (and its Dockerfile)?

How do developers perceive them?

Step 3:
Quality-Aware Generation of Dockerfiles and

Docker images

Quality-aware generation of Dockerfiles and
images using a quality model

A How to intercept developers’ preferences?

What's

Improving quality by fixing

Dockerfile smells

next?

A It is not clear what smells are relevant
to be fixed

Step 2:
Quality Features impacting on the adoption

of adoption of a Docker image

What are the quality aspects of a Docker
image (and its Dockerfile)?

. Step 3:
? . .
How do developers perceive them Quality-Aware Generation of Docker
Artifacts

Quality-aware generation of Dockerfiles and
images using a quality model

A\ How to intercept developers’ preferences?

2023 —>

2021 se=sere= 2022

Giovanni Rosa

STAKE Lab
University of Molise, Italy u m m a ry

giovanni.rosa@unimol.it

What's

Improving quality by fixing

Dockerfile smells

= =|=> 18D next?

A It is not clear what smells are relevant
to be fixed

Step 2:

Quality Features impacting on the adoption .
Quality score

of adoption of a Docker image

What are the quality aspects of a Docker
image (and its Dockerfile)?

. Step 3:
? . .
How do developers perceive them Quality-Aware Generation of Docker

Artifacts
More work

Quality-aware generation of Dockerfiles and Il I I S .

images using a quality model | S n e e d e d

A\ How to intercept developers’ preferences?

2023 —>

2021 se=sere= 2022

Giovanni Rosa

EJ-LAI\VKEFIS_.?EB of Molise, Italy Qu e St i o n S ?

giovanni.rosa@unimol.it

