Evaluating SZZ Implementations
Through a Developer-informed Oracle

Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano,
Gabriele Bavota, Michele Lanza, Rocco Oliveto

SOSSESY DEGLI STUDI
%, 4Ry DEL MOLISE

43 INTERNATIONAL | @ICSEconf
CONFERENCE ON

SOFTWARE ENGINEERING

If you build it, they will come

Yeah, I'm just
writing the code now.

UN

T

gspot.com © 2013

Where do bugs come from?

Understanding where bugs are introduced allows to...

Find out changes that can lead to a problem
and avoid them in future

=3

Understanding where bugs are introduced allows to...

Estimate how much a program is error-prone

=

Understanding where bugs are introduced allows to...

Better allocate resources in testing activities

=

Sliwerski
Zimmermann
Zeller

@ MSR 2005

When Do Changes Induce Fixes?

{On Fricays.)

Jacek Sliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbricken, Germany

sliwers@mpi-sh.mpg.de

ABSTRACT

As a software system evolves, ProZrammers make changes that
sometimes cause problems. We analyze CVS archives for fix-in-
ducing changes—changes that lead to problems, mdicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such as CVS) to a bug database (such as
BUGZILLA). In a first investigation of the MOZILLA and ECLIPSE
history, it tums out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applhed.

Categories and Subject Descriptors

D.2.7 [Software Engimeering]: Distibution. Maintenance, and
Enhancement—corrections, version control, D2 8 [Metrics): Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION

When we mine software histories, we frequently do so in order
to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a siznificant fraction of
problems that are reported some time after some change has been
made

In this work, we attempt to identify those changes thar caused

probiems. The basic idea 1s as follows:

1. We start with a bug report in the bug database, mdicating a
fixed probiem.

[

We extract the associated change from the version archive,
thus giving us the jocarion of the fix.

w

We determine the earlier change at this location that was ap-
plied before the bug was reported.

This earlier change is the one that caused the later fix. We call such
a change f ‘cr-'rdr.rma

‘What can one do with fix-inducing changes? Here are some po-
tential applications:

Permission to make digital or hard copies of all or past of this work for
perscnal or chisaroom use is graxted without fos provided that copies are
not mads or distibated for profit or commercial advantage and that copies
bear this notice and the fall citation oo the ﬁr:pugn To copy otherwise, to
ropublish, to post on sarven of to redisibute to Lists, requires prier specific

MSR'05May17,2005,SaintLouds Mis USA
Copyright2005ACM1-59593-1 ‘3 SC‘ 0005...85.00.

Thomas Zimmermann Andreas Zeller
Department of Computer Science
Saarland University
Saarbricken, Germany

{tz, zellery@acm.org

Which change properties may lead to problems? We can inves-
tigate which properties of a change comelate with inducmg
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assizn a mewic to the
product—on averaze, how lkely is it that a chanze induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later

Can I improve guidance along related changes? Whenusinz co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first expenences with fix-inducing chang-

es. We dfjcuss how to extract data from version and bug archi s
(Section bow we link bug reports to changes (Section 3)
In Secti cribe how to identify and locate fix-inducing

changes. Section 5 shows the results of our investization of the
MOZILLA and ECLIPSE: It tums out that fix-inducing changes show
distinct patterns with 1 eaﬁ their size and the day of week they
were applied. Sections close with related and future work.

2. WHAT'SIN OUR ARCHIVES?

For our analysis we need all changes and all fixes of a project
We get this data from version archives like CVS and bug macking
systems ke BUGZILLA.

A Cvs archive contains information about changes: Who changed
what, when, why. and how? A change & transforms a revision ry to
arevision r; by inserting, deleting, or changing lines. We will later
mvestizate changes on the line level. Several changes 4,....4.
form a zransaction ¢ if they were submitted to CVS by the same
developer, at the same time, and with the same log message, e,
they have been made with the same intention. e.2. to fix abug or to
mrroduce a new feature. As CVS records only individual changes
to files, wi Eroup these to transactions with a siiding rime window
approach [IZ].

A Cvs archive also lacks information about the purpose of a
change: Did it inroduce a new feature or did it fix a bug? Althoysh
1t is possible to identify such reasons solely with log messages [7].
we combine both CVS and BUGZILLA for this step because this
mcreases the precision of our approach.

A BUGZILLA database collects bug reports that are submitted by
a reporter with a short description and a summary. After a bug has
been submitted, scussad by developers and users who pro-
vide additional commenrs and may create atrachments. After the

bug report

l analysis

SZZ in a nutshell

bug report

analysis
.a (A) (B) (C)

Bug-fixing git blame Buggy
commit commit

E - QF = E

SZZ in a nutshell

bug report
analysis
Filtering of resulting
commits

(A) (B) (€) —
Bug-fixing git blame Buggy e
commit commit Step 2 =3

E = @ »E

SZZ in a nutshell

bug report
analysis
Filtering of resulting
commits

(A) (B) (€) —
Bug-fixing git blame Buggy —
commit commit Step 2 Step 3

Eéf-}‘) -p =

KNRE

bug-inducing
commit

SZZ in a nutshell

A Framewu
s2z Appro,

K for Evalyati
ach o atin,

g the R,
r Identifyin B,
Changeg 9 Bug

€sults of the
i !mroducing
ce Fixes?

es Indu
po Changes]
When e

o

ek ST o

Jloemr sy

e When Do Changes Induce Fixes?

sacok Snrsh Thomas zmmermanm _ Angreas Zeter
= A Frar B S i .
;;;;;: Szz+
. Automatie Identification of Bug-Introduc A Framework for Evaluating the Results of the SEmPUTEteibuest nd ependench b bt for
p— T - o S22 Approach for Identifying Bug-Introducing : ®
i hanges o o e e

Danit Alonca a Gosa, Shane ciosh, Wy Shang, Ui Kesz, oberta Coslo, Atmed . Hassan

2

The Impact of Refactoring Changes on the SZZ
Algorithm: An Empirical Study

T
§ Results O 1
 evauatnd "8 o iroduci®d
A Framework w(or \gentyind .
77 Approa™ ' Grarnes e

st
o W

e
s 00

i

St Wt
s B Jaime.
Gracia s Cagas Spacco
ABSRyCy un.(@g;ﬁ%,w
- ks ey

Different SZZ variants proposed

There iIs a problem

A Framework for Evaluating the Results of the
SZZ Approach for ldentifying Bug-Introducing
Changes

Daniel Alencar da Costa, Shane Mcintosh, Weiyi Shang, Uira Kulesza, Roberta Coelho, Ahmed E. Hassan

Abstract— The approach proposed by Sliwerski, Zimmermann, and Zeller (SZZ) for identifying bug-introducing changes is at the
foundation of several research areas within the software engineering discipline. Despite the foundational role of SZZ, little effort has
been made to evaluate its results. Such an evaluation is a challenging task because the ground truth is not readily available. By
acknowledging such challenges, we propose a framework 1o evaluate the results of alternative SZZ implementations. The framework
evaluates the following criteria: (1) the earkest bug appearance, (2) the future impact of changes, and (3) the reakism of bug Introduction
We use the proposed framework 10 evaluate five SZZ implementations using data from ten open source projects. We find that previously
proposed improvements 1o SZZ tend to inflate the number of incorrectly identfied bug-introducing changes. We also find that a single
bug-introducing change may be blamed for introducing hundreds of future bugs. Furthermore, we find that SZZ implementations report
that at least 46% of the bugs are caused by bug-intreducing changes that are years apart from one another. Such results suggest that
current SZZ implementations still lack mechanisms 1o accurately identfy bug-introducing changes. Our proposed framework provides a
systematic mean for evaluating the data that is generated by a given SZZ implementation

Index Terms—SZZ, Evaluation framework, Bug detection, Software repository mining, Software engineering.

1 INTRODUCTION

OFTWARE bugs are costly to fix [1]. For instance, a recent
S\llld}‘ suggests that developers spend approximately
half of their time fixing bugs [2]. Hence, reducing the
required time and effort to fix bugs is an alluring research
problem with plenty of potential for industrial impact

After a bug has been reported, a key task is to identify
the root cause of the bug such that a team can learn from
its mistakes. Hence, researchers have developed several
approaches to identify prior bug-introducing changes, and
to use such knowledge to avoid future bugs [3-10]

A popular approach to identify bug-introducing changes
was proposed by Sliwerski, Zimmermann, and Zeller
(“SZZ" for short) [9, 11]. The SZZ approach first looks for
bug-fixing changes by searching for the recorded bug 1D in
change logs. Once these bug-fixing changes are identified,
SZZ analyzes the lines of code that were changed to fix
the bug. Finally, SZZ traces back through the code history
to find when the changed code was introduced (ie., the
supposed bug-introducing change(s))

o D i u. Kub and R. Coelho are with the of
s and Applied Mathematics (DIMAp), Federal
Norte, Brazil
ira, roberta) elimap. ufrn br
. t of Ele al and Computer
. Department of Computer Science and Softuser
rsity, Camada
. I the Softwre Analysis and Intelligence Lab

ing, Queen's University, Canada

+

Two lines of prior work highlight the foundational role
of SZZ in software engineering (SE) research. The first line
includes studies of how bugs are introduced [9, 10, 12-
22]. For example, by studying the bug-introducing changes
that are identified by SZZ, researchers are able to correlate
characteristics of code changes (e.g., time of day that a
change is recorded [9]) with the introduction of bugs. The
second line of prior work includes studies that leverage
the knowledge of prior bug-introducing changes in order
to avoid the introduction of such changes in the future
For example, one way to avoid the introduction of bugs
is to perform just-in-time (JIT) quality assurance, ie., to
build models that predict if a change is likely to be a bug-
introducing change before integrating such a change into a
project’s code base. [6, 8, 23-25]

Despite the foundational role of SZZ, the current evalua-
tions of SZZ-generated data (the indicated bug-introducing
changes) are limited. When evaluating the results of SZZ
implementations, prior work relies heavily on manual anal-
ysis [9, 11, 26, 27]. Since it is infeasible to analyze all
of the SZZ results by hand, prior studies select a small
sample for analysis. While the prior manual analyses yield
valuable insights, the domain experts (¢g., developers or

testers) were not consulted. These experts can better judge
if the bug-introducing changes that are identified by SZZ
correspond to the true cause of the bugs

Unfortunately, to conduct such an analysis is impractical
For instance, the experts would need to verify a large sample
of bug-introducing changes, which is difficult to scale up
to the size of modern defect datasets. Additionally, those
changes may be weeks, months, or even years old, forcing
experts to revisit an older state of the system that they

Evaluating and
comparing the SZZ7
variants

Da Costa et al. @ TSE 2016

Small datasets used for evaluation

Small datasets used for evaluation

Validation manually performed by
researchers

Define a dataset validated by
the developers

4

fixes a search bug
introduced by 2508e12

and fixes a typo in the
README.md

Developer-informed
dataset

2011 2020

GitHub

/:9 keyword-based filter

Al-powered syntax analysis Y

2 Heuristic approach

/:9 keyword-based filter

Al-powered syntax analysis Y

g duplicate commits removal

3 Heuristic approach

False
positives

-+

Bug report
data

Manual validation

Commit fixe @. uote pov-ray binary on windows
message this fixes aug introduced by #3523741...

Date when the
Issue is reported

URL

https://tracker.freecadweb.org/view.php?id=1740 Date Submitted
2014-09-10 22:57

Bug report data

Analyzed commits:

19,6M

Extracted commits:

3,6k

After manual validation:

1,9k

Top programming languages

AR\ N R
Q“& o SR A

Final number of commits:

1,1k

Commits with issue report:

129

How do different variants of SZZ
perform in identifying
bug-inducing changes?

Sliwerski et al.

When Do Changes Induce Fixes?

Jacek Siwsrski Thoms Zmmermann _ Andreas Zeller

Siwers@mprsh g de

ABSTRACT

ot st g b g s
S e N

P AT SN
1._INTRODUCTION STt e e e

. 2 WHAT'S IN OUR ARCHIVES?

B-SZ7

@ MSR 2005

B-SZ7 DJ-S27

Sliwerski et al. @ MSR 2005 Williams and Spacco @ ISSTA 2008

S

AG-SZ7Z R-SZ7Z e L-527

Kim et al. @ ASE 2006 Davies et al. @ JSE 2013

A Framework for Evaluating the Results of the
SZZ Approach for Identifying Bug-Introducing
Changes

When Do Changes Induce Fixes?

\\\\\\

B-SZ7 DJ-SZ7 MA-SZZ

Sliwerski et al. @ MSR 2005 Williams and Spacco @ ISSTA 2008 Da Costa et al. @ TSE 2016

—

AG-SZ7Z R-SZZ e L-SZZ RA-5Z7

Kim et al. @ ASE 2006 Davies et al. @ JSE 2013 Neto et al. @ SANER 2018

SZZ Unleashed PyDriller

(DJ-SZZ) (AG-SZ2)
OpenSZZ RA-SZZ
(B-SZ2) (RA-SZ2)

Open-Source implementations

bug report
analysi

Filtering of resulting
commits

(A) (B) (€) —
Bug-fixing git blame Buggy —
commit commit Step 2 Step 3

NRK
I

bug-inducing
commit

Our experiment

Precision 0.66 (R-SZ2)
Recall 0.72 (SZZ@UNL)
F1-score 0.61 (R-SZ2)

X

Precision 0.66 (R-SZ2) 0.09 (SZZ@UNL)

Recall 0.72 (SZZ@QUNL) 0.19 (SZZ@OPN)
Java only

F1-score 0.61 (R-SZ2) 0.16 (SZZ@UNL)

Qualitative Analysis

What have we learned?

=

ALY

“The buggy line is
not always impacted
In the bug-fix ,,

Lesson 1

“SZZ is sensible to

history rewritings ,, '
4

||

Lesson 2

“ Looking at the
~ big picture in
w code changes,,

Lesson 3

bug report

analysis
Filtering of resulting
commits
w ®
ug- it blame U y
it col i
ER

SZZ in a nutshell

bug-inducing
commit

D"-:;

Summary

Small datasets used for evaluation

Validation manually performed by
researchers

3 Heuristic approach

/\9 keyword-based filter

m:) Al-powered syntax analysis

&% duplicate commits removal
-

B-SZZ DJ-S2Z MA-SZZ

Sliwerski et al. @ MSR 2005 Williams and Spacco @ ISSTA 2008

AG-S7Z R-SZZ e L-SZZ

Kim et al. @ ASE 2006 Davies et al. @ JSE 2013

Da Costa et al. @ TSE 2016

RA-Sz7

Neto et al. @ SANER 2018

o o

0.66 (R-SZ2)

Precision

0.09 (SZZ@UNL)

Recall 0.72 (SZZ@UNL) 0.19 (SZZ@OPN)

Java only

F1-score 0.61 (R-SZ2)

0.16 (SZZ@UNL)

Results

What have we learned?

.

=T T
Pp:

J f B

Take a look at our SZZ implementation!

https://github.com/grosai/pyszz

=

Av i

1>

