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Abstract—A supervised nearal network (NN)-based algorithm
was used for a tion of ischemic episodes resulting
e performance of
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the 12-lead standard electrode system where the ST depression
dent in ischemic beats, while ST d y exist
when ischemia is not present such as can happen with leads
Il and & VF due to patient position [4]. Ischemic episodes
could be acute ones that should be detected immediately
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by and comcdy dtected Albough schemia dum:on
T Syl 6 M o somue Sl ok
ohu fod by ¢ mber of bochemial 2 otk
cxaminations, ECG sl emains on o the besc bioignals
for siding the clinical staff in a CCU environment
Major problems contributing 10 poos deecton of the ST
segment in the ECG identified as follows: 1) slow
baseline dif, 2) mofe, 3) sloped ST changes, 4 patc
dependent abrormal ST d& cls, and 5) varying ST-T

Index Terms: i schemi Inet-
works, ST segment depression, b

L INTRODUCTION
SCHEMIA is considered to be a major complication of
the cardisc function, and a prime cause for the occurrence

of candiac infarction and dangerous cardiac arthythmias [1].

‘main characteristic of ischemia at the celular level is the
ar resting membrane potential. This

mic

s manifested in the clectrocardiogram

“This “injury current”
(ECG) by an ST depression or elevation, depending on the
anatomical position of the heart and the dipole’s position with
respect to the recording electrodes [3]. Thus, there are cases in
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patterns in the ECG of the same pallm A number of methods
have been proposed in the literature for ST detection based on
digital iltring, time analysis of the signal first derivative, and
syntactic methods [S}-{7]. None of these methods,
was tested on an annotated databas to obtain a reliable
evaluation of their ability to detect ST depression. Further-
more, these methods tend to measure specific parameters (such
as degree of depression, ST-T duration, etc.) in ways critically
dependent upon the correct detection of the J-point on the
ECG. Uncertainty regarding the J-point position, may lead to
inaccurate estimation of the ECG parameters related 10 the
T-T segm

Recently, & new annoated database was developed, con-
taining recordings with annotated ischemic episodes based
on two-lead ECG’s [8]. A number of new algorithms were
developed to identify ischemia using this database. Jager ef
L 19, [10] wd infoation from both keads o improve

easit e detection and to correctly
sty ST depression rsuing fom axis shils du 1o by
position. Laguna eral. [11] used a Karhunen-Loeve transform
for the analysis of ventricular depolarization, but not for
ischemic episode detection.

Neural networks (NN's) have been widely used over the
past few years as pattern and statistical classifiers [12], [13] in
many application arcas including medicine [14]. For example,
NN's were used for QRS/PVC classification [15], [16], or for

however,
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the 12-lead standard electrode system where the ST depression
t evident in ischemic beats, while ST d y exist
when ischemia is not present such as can happen with leads
Il and & VF due to patient position [4]. Ischemic episodes
could be acute ones that should be detected immediately
‘when the patient is in & critical care unit (CCU) environment,
but also in a Holter database ischemic episodes should be
rlaby and comecly dtoied. Akbough ischenis deccion
lone is difficult to accomplish, and has
0 be accompanied by a number of biochemical and other
examinations, ECG still remains one of the basic biosignals
for siding the clinical staff in a CCU environment
Msjor problems contributing to poor detection of the ST
segment in the ECG can be identified as follows: 1) slow
baseline 8, 2) mols, 3) doped ST charges, ) petes.
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L INTRODUCTION
SCHEMIA is considered to be a major complication of
the cardisc function, and a prime cause for the occurrence

of cardisc infarction and dangerous cardiac arthythmias [1].

‘The main characteristic of ischemia at the cellular level is the

depolarization of the cellular resting membrane poteatial. This

causes a potential difference between the normal and ischemic

tissue which, in tum, causes the flow of n “injury curreat” (2],

“This “injury 1 manifested in the electrocardiogram

(ECG) by an ST depresson or clevation, dpending on the

anatomical position of the heart and the dipole’s position with

respect to the recording electrodes [3]. Thus, there are cases in
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patterns in the ECG P mum b of mthods
have been proposed in the literature for ST detection based on
digital iltring, time analysis of the signal first derivative, and
syntactic methods [S}-{7]. None of these methods, however,
was tested on an annotated database, 50 8 to obtain a reliable
evaluation of their ability to detect ST depression. Further-
more, these methods tend to measure specific parameters (such
as degree of depression, ST-T duration, etc.) in ways critically
dependent upon the correct detection of the J-point on the
ECG. Uncertainty regarding the J-point position, may lead to
inaccurate estimation of the ECG parameters related 10 the

Recently, a new annotated datsbase was developed, con-
taining recordings with annotated ischemic episodes based
on two-lead ECG’s [8]. A number of new algorithms were
developed to identify ischemia using this database. Jager ef
al 9], [10] used information from both leads to improve
sensitivity of ischemic episode detection and to correetly
classify ST depression resulting from axis shifts due to body
position. Laguna eral. [11] used a Karhunen-Loeve transform
£ 00 sty of e ety o [ 6
ischemic episod

Neur! networks (NN have been widely used over the
past few years as pattern and statistical classifiers [12], [13] in
many application arcas including medicine [14]. For example,
NN's were used for QRS/PVC classification [15], [16], or for
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Abstract

Patients with suspected acute coronary syndrome (ACS) are at risk of transient myocardial ischemia (TMI), which
could lead to serious morbidity or even mortaltsy. Early detection of myocardial ischemia can reduce damage 10
heart tissues and improve patient condition. Significant ST change in the electrocardiogram (ECG) is an important
marker for detectng; myocardial chemia during she ule-ou phase of porensial ACS. Howeer, carrent ECG
‘monitoring software i vastly underused due 1o excessive false alarms. The present study aims 10 tackle this problem
by combining a novel image-based approach with deep learning techniques 1o improve the detection accuracy of
significant ST depression change. The obiained convolutional neural network (CNN) model yields an average area
under the curve (AUC) at §9.6% from an independent testing set. At selected optimal culoff thresholds, the proposed
model yields a mean sensitivity at 84.4% while mainialning specifcity at 84.9%

1. Introduction

Patieats with acute coronary syndrome (ACS) are at risk of transient myocardial ischemia (TMI), which can lead to
serious medical complications. It has been found that more occurrence of myocardial infarction after admission,
acute pulmonary edema and unplanned transfer from telemetry wnit to the intensive care unit associated with
patients with TMI compared to those without TMI'. As a critical step in identifying ACS, the early detection of
myocardial ischemia helps reduce irreversible damage o heart tissues and prevent patient deterioration. Several
deployed methods in detecting myocardial ischemia, such as coronary angiography and echocardiogram, are either
invasive and/or resource demanding, or oaly able to access a brief time period, making them unsuitable for initial
rleout plase for ACS. On the e Band, conipuons elecrucadography (ECG) prvides an oconaica
altemative and sdditional diagnostic values for early transient isch asures the

activitics of the heart in real ime and logﬂhcrwlm P iachcing aey

setup and long-term manitoring.

ECG is an important risk stratification tool in the immediate phase of ACS. ST (i.. the isoelectric section in ECG
waveform between J point and the beginning of T wave) elevation oa the ECG is presented in up to 25% of ACS
patiens (ic., ST clevation myocardial infarction (STEMI)), whereas the rest (non-ST elevation-ACS (NSTE-ACS)
or unstable angina (UA)) show noa-specific ECG changes®. This 75% of ACS patients is at risk for TMI, which can
be detected with continuous ECG monitoring. However, current ECG monitoring software is underutilized due to
excessive false alarms'. This further contributes to alamn fatigue, which is ranked s the top technology hazard in
2014 by the Emergency Care Research Institute (ECRIY

In contrary to current monitoring software, expert clinicians are capable of detecting true ST changes even if the
ECG is moderstely contaminated (i, motion artifact, patient movement, etc.) and are able to differentiate between
ischemic and non-ischemic changes, by examining ECG waveforms screen by screen. Therefore, representing ECG
tracings as images could provide valusble discriminative features about ST change. Meanwhile, the rapid
developing approach of deep learning techniques, especially the convolutional neural network (CNN), has been
constanly pushin th pefornance boundary of imag recognition by computer o', A well-designd CNN

model has et benchmarks in a challenge’. Some pioncer studies have adopted
dmx lwmngmhmum I mining BOG fermen mmkluwuumgmg medicalproblems rlated o the b, I ane
etect various types of arhy In another study, CNN was utilized to leam
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patterns in the ECG P patient. A number of methods
have been proposed in the literature for ST detection based on
digital iltring, time analysis of the signal first derivative, and
syntactic methods [S}-{7]. None of these methods, however,
was tested on an annotated database, 50 8 to obtain a reliable
evaluation of their ability to detect ST depression. Further-
more, these methods tend to measure specific parameters (such
as degree of depression, ST-T duration, etc.) in ways critically
dependent upon the correct detection of the J-point on the
ECG. Uncertainty regarding the J-point position, may lead to
inaccurate estimation of the ECG parameters related 10 the
ST-T segment
Recently, a new annotated datsbase was developed, con-
taining recordings with annotated ischemic episodes based
on two-lead ECG’s [8]. A number of new algorithms were
developed to identify ischemia using this database. Jager ef
[10] used information from both leads to improve
sensitivity of ischemic episode detection and to correetly
classify ST depression resulting from axis shifts due to body
position. Laguna eral. [11] used a Karhunen-Loeve transform
£ 00 sty of e ety o [ 6
ischemic episod
Neural networks m.v ) e been widely used over the
past few years as pattern and statistical classifiers [12], [13] in
many application arcas including medicine [14]. For example,
NN's were used for QRS/PVC classification [15], [16], or for
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Abstract

Patients with suspected acute coronary syndrome (ACS) are at risk of transient myocardial schemia (TMI), which
could lead to serious morbidity or even mortaltty. Early detection of myocardial ischemia can reduce damage 10
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serious medical complications. It has been found that more occurrence of myocardial infarction after admission,
acute pulmonary edema and unplanned transfer from telemetry wnit to the intensive care unit associated with
patients with TMI compared to those without TMI'. As a critical step in identifying ACS, the early detection of
myocardial ischemia helps reduce irreversible damage o heart tissues and prevent patient deterioration. Several
deployed methods in detecting myocardial ischemia, such as coronary angiography and echocardiogram, are either
invasive and/or resource demanding, or oaly able to access a brief time period, making them unsuitable for initial
rleout plase for ACS. On the e Rand, conipuons elecrucadography (ECG) provides an oconaica
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ECG is an important risk stratification tool in the immediate phase of ACS. ST (i.. the isoelectric section in ECG
waveform between J point and the beginning of T wave) elevation oa the ECG is presented in up to 25% of ACS
patiens (i.c., ST clevation myocardial infarction (STEMI), whereas the rest (non-ST elevation-ACS (NSTE-ACS)
or unstable angina (UA)) show noa-specific ECG changes®. This 75% of ACS patients is at risk for TMI, which can
be detected with continuous ECG monitoring. However, current ECG monitoring software is underutilized due to
excessive flse alarms*. This further contributes to alamn ftigue, which is ranked a5 the t0p technology hazard in
2014 by the Emergency Care Research Institute (ECRI)

In contrary to current monitoring software, expert clinicians are capable of detecting true ST changes even if the
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Abstract

First, preprocessing and delineation of the fiducial points
were appied t the ECG signal. Secondly, various locel
bined with

(£CG)
is of great significance for ischemia. heart disease
diagnosis. In this paper, we proposed an algorithm based
‘on muliple feature extraction to classify the ST deviation
beat by beat. First, the ST segment was located. Then,
morphological and Poincar éfeatures of ST segment were
extracted_and combined with global feature. Finally,
random forest was adopled to classify the ST segment
hange into normal, elevated or depressed. The algorithm
was evaluated on the European ST-T Database and the
average sensitivity of normal, depressed and elevated ST
segment was 85.2% 86.9% and 88.8% respectively. The
result shows that the developed algorithm is helpfid in
automatically detecting the ST segment_ elevation and
depression. showing more details of the ischemic
syndrome.

1. Introduction

ST segment change is a crucial symplom related with
‘myocardial ischemia and detection of ST deviation plays
an important role in myocardial infarction diagnosis. The
ST segment clevation most happens in patients with
transmural myocardial ischemia or variant angina pectoris
e the ST sgment depression usally appears in
subendocardial ischemia or unstable angina [1],
Flccrocudiogram (ECC) s & now nvasion, conveicnt,
cheap and widely used way to detect ST deviation.

A number of algorithms [2-3] based morphological
features have been widely used to detect the ST deviation.
Stergios et al. [4] proposed a method based on self-
organizing map (SOM) for the identification of ischemia
insignsl wih V1-VS lesd. Jinko ot l. [5) dsined iee

and used support vector machine (SVM)
YSu deusiy it (KDE) 1w Aty shoora
However, morphology of the ST segment is various,
susceptible to noise and patient-specific, thus it’s difficult
to detect ST deviation accurately.

In this paper, we proposed an algorithm to classify the
ST segment changes into normal, depressed and elevated.

s il g i, sars e et ot o
classify the heartbeat. The result shows that the algorithm
is helpful to detect various types of ST deviation
automatically.

2. Methodology

‘The schema of the proposed methodology is shown in
Figure 1, including steps of preprocessing, feature
extraction and ST change classification.

Feature Extractio

[ Bear Crassifcatio

T i

Figure 1. Schema of the proposed methodology
21 Preprocessing

ECG signal is easily affected by noise such as muscle
electricity, power line interference and baseline wander,
which ofien changes the ST segment and the electrical linc
and further leads to inaccurate detection. The same noise
elimination way as Kumar [6] was adopted. Then, the Pan-
Tompkins algorithm [7] was used for QRS complex
detection. After that, absolute maximum in the window
1QRS-015, QRS0.3] was seached fo R pesk Q. T, P
wave and J point were located by the same w

161 Then he ECG sgan vas s:ynem:d i S
beats were taken as a sampl
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patterns in the ECG. P paucnl A number of methods
have been proposed in the literature for ST detection based on
digital iltring, time analysis of the signal first derivative, and
syntactic methods [S}-{7]. None of these methods, however,
was tested on an annotated database, 50 8 to obtain a reliable
evaluation of their ability to detect ST depression. Further-
more, these methods tend to measure specific parameters (such
as degree of depression, ST-T duration, etc.) in ways critically
dependent upon the correct detection of the J-point on the
ECG. Uncertainty regarding the J-point position, may lead to
inaccurate estimation of the ECG parameters related 10 the
ST-T segment.

Recently, a new annotated datsbase was developed, con-
taining recordings with annotated ischemic episodes based
on two-lead ECG’s [8]. A number of new algorithms were
developed to identify ischemia using this database. Jager ef
L 19, [10] wd infoation from both keads o improve

y of episode_detection and to correctly
Clasify ST depresion reauing from xis shifls due 1 body
position. Laguna eral. [11] used a Karhunen-Loeve transform
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ischemic epis

Neural mwumu m.v ) e been widely used over the
past few years as pattern and statistical classifiers [12], [13] in
many application arcas including medicine [14]. For example,
NN's were used for QRS/PVC classification [15], [16], or for
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Abstract

Patients with suspected acute coronary syndrome (ACS) are at risk of transient myocardial schemia (TMI), which
could lead to serious morbidity or even mortaltty. Early detection of myocardial ischemia can reduce damage 10
heart tissues and improve patient condition. Significant ST change in the electrocardiogram (ECG) is an important
marker for detecting myocardial ischemia during the rule-out phase of potential ACS. However, current ECG
‘monitoring software is vastly underused due to excessive false alarms. The present study aims o tackle this problem
by combining a novel image-based approach with deep learning techniques 1o improve the detection accuracy of

significant ST depression change. The obiained convolutional neural network (CNN) model yields an average area
under the curve (AUC) at §9.6% from an independent testing set. At selected optimal culoff tresholds, the proposed
model yields a mean sensitivity at $4.4% while mainiaining specifcity at $4.9%

1. Introduction

Patieats with acute coronary syndrome (ACS) are at isk of transient myocardial ischemia (TMI), which can lead to
serious medical complications. It has been found that more occurrence of myocardial infarction after admission,
acute pulmonary edema and unplanned transfer from telemetry wnit to the intensive care unit associated with
patients with TMI compared to those without TMI'. As a critical step in identifying ACS, the early detection of
myocardial ischemia helps reduce irreversible damage o heart tissues and prevent patient deterioration. Several
deployed methods in detecting myocardial ischemia, such as coronary angiography and echocardiogram, are either
invasive and/or resource demanding, or oaly able to access a brief time period, making them unsuitable for initial
rleout plase for ACS. On the e Rand, conipuons elecrucadography (ECG) provides an oconaica
altemative and sdditional diagnostic values for early transient ischemia detect asures the

activities of the heart in real time and togctbee with athr reactis iachcing aey

setup and long-term monitoring.

ECG is an important risk stratification tool in the immediate phase of ACS. ST (i.. the isoelectric section in ECG
waveform between J point and the beginning of T wave) elevation oa the ECG is presented in up to 25% of ACS
patiens (i.c., ST clevation myocardial infarction (STEMI), whereas the rest (non-ST elevation-ACS (NSTE-ACS)
or unstable angina (UA)) show noa-specific ECG changes®. This 75% of ACS patients is at risk for TMI, which can
be detected with continuous ECG monitoring. However, current ECG monitoring software is underutilized due to
excessive flse alarms*. This further contributes to alamn ftigue, which is ranked a5 the t0p technology hazard in
2014 by the Emergency Care Research Institute (ECRI)

In contrary to current monitoring software, expert clinicians are capable of detecting true ST changes even if the
ECG is moderstely contaminated (i, motion artifact, patient movement, etc.) and are able to differentiate between
ischemic and non-ischemic changes, by examining ECG waveforms screen by screen. Therefore, representing ECG
tracings as images could provide valusble discriminative features about ST change. Meanwhile, the rapid
developing approach of deep learning techniques, especially the convolutional neural network (CNN), has been
consaly pushing th pefomanc boundaryof mego tecogiton by compuersgortns’. A well-designed CNN
model has e  human benchmarks in challenge'. Some pioneer studics have adopted
decpleaming cchniques in mining ECG feanues 0 mklcmumgmg etialpeblemsreated tothe bea. 1 coe

arious types of arhyth in another study, CNN was udilized to learn
ECQ e o Scrcniog paroxyuma el ellation paticoss

256

was evaluated on the European ST-T Database and the
average sensitivity of normal, depressed and elevated ST
segment was 85.2% 86.9% and 88.8% respectively. The

syndrome.

1. Introduction

‘myocardial ischemia and detection of ST deviation plays

features have been widely used to detect the ST deviation.
Stergios et al. [4] proposed a method based on self-
organizing map (SOM) for the identification of ischemia
insignsl wih V1-VS lesd. Jinko ot l. [5) dsined iee

YSu deusiy it (KDE) 1w Aty shoora
However, morphology of the ST segment is various,
susceptible to noise and patient-specific, thus it’s difficult

T Segment Change Classification Based on Multiple Feature Extraction Using
ECG
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Abstract First, preprocessing and delineation of the fiducial points

wers applied to the ECG signal. Scondly,varous locsl

ST deviati (£CG) features. bined with

s of great significance for ischema. heert disease  the global feaures. Finally, random e et ot o

diagnosis. In this paper, we proposed an algorithm based  classify the heartboat. The result shows that the algorithm

‘on muliple feature extraction o classify the ST deviation 15 helpful to detect various types of ST deviation
beat by beat. First, the ST segment was located. Then,  automatically.

morphological and Poincar éfeatures of ST segment were
extracted_and combined with global feature. Finally, 2. Methodology
random forest was adopled to classify the ST segment

‘The schema of the proposed methodology is shown in
Figure 1, including steps of preprocessing, feature
extraction and ST change classification.

hange into normal, elevated or depressed. The algorithm

vesult shows that the developed algorithm is helpful in _l  Nebe eucton
ey e e o eng LR R
depression, showing more details of the ischemic B L Scmnsion

ST segment change is a cru

1 symptom related with

an important role in myocardial infarction diagnosis. The 1 0 L«

ST segment clevation most happens in patients with AT ARRT
transmural myocardial ischemia or variant angina pectoris (==
wiile the ST scgment depression uually appears in - Figure 1. Schoma of he proposed methodology
subendocardial ischemia or unstable angina [1],

Flecrocardogram (ECG) is  non ivasion, comenint 21, Preprocessing
cheap and widely used way to detect ST deviation,

A number of algorithms [2-3] based morphological ECG signal is easily affected by noise such as muscle

electricity, power line interference and baseline wander,
which ofien changes the ST segment and the electrical linc
and further leads to inaccurate detection. The same noise
elimination way as Kumar [6] was adopted. Then, the Pan-
Tompkins algorithm [7] was used for QRS complex
detection. After that, absolute maximum in the window
1QRS-015, QRS0.3] was seached fo R pesk Q. T, P
wave and J point were located by the same w

161 Then he ECG sgan vas s:ynem:d i S
beats were taken as a sampl

and used support vector machine (SVM)

detect ST deviation accurately.
In this paper, we proposed an algorithm to classify the

ST segment changes into normal, depressed and elevated.
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Abst

This papev describes an automated selection of the ST segment in 12 leads e\e:!recavd\egvam (ECG) as well as its clas-

sification based on ion. Our proposed method cl i are (2) Up
oncave (e)

ECG (patient ECG) ST seg i t MITBIH ST

1-h episode. Our method contains the following steps (1) Fitering ECG signal and Detrending it (2) R peak and S peak
detecton (3 Startng and ending point dtecton of ST segment 4 Compavmg with ST segment supervised data (5)

ST 126,608 ST segments. ST segment
Caestcaton accuracy is 88.20% for MIT-BIH ST change database and 96. o for European ST change da(abaxe The

heart diseases ike myocardia schernia

1 Introduction helpful for physicians. Reduction of blood flow to our heart
myocardial ischemia prevents the supply of enough
Itisimportant to extract the features of ECG signals tofind ~ oxygen. This reduced blood flow sometimes partially
i blacks our heart arteries, This myocardial ischemia may
contains different types of wave suchas P.Q, R, S, T,Uwave  also be called cardiac ischemia which can damage our
(Fig.1). QR,Swaves pump.
are called QRS Complex. Due toheart thythm, theshape of  Myocardial ischemia is identified by monitoring end
ECG signal (hanges over time. At the end of S wave J point point of S wave to start point of T wave. This part s seg-
3 important for detecting myocar-  ment of ECG signal which is called ST segment. Our pro-
ol chimi o of e s ocus o PRandTwave  posed method focuses on this ST segment changes and
detection and T wave alteration [1]. i Nat
Itis not easy for physicians to extract features of ECG t iy
from visual perception. So, developing an algorithm on  contained i the middle of ventricular depolarization and
ECG signal for finding required features will be more  repolarization (Fig. 2.

) P
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A need for automatic systems having real-time
anomaly detection with high accuracy
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RAST in a nutshell
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Generation of features vector
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(EMO-DWT)
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10 successive heartbeats

Multifractal Wavelet Leader
(MWL)

Fast Fourier Transform (FFT)







European ST-T Database

90 ~360

ECG Recordings ST segment change
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Parameters Tuning

n. of evaluated beats
[4, 6, 8, 10, 16, 32, 64]

Temporal Window for the
Heartbeat Observation
(TWHO)
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To what extent does the accuracy of
a binary or ternary detector of ST-segment
anomalies vary?




Dataset for RAST binary
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Dataset for RAST ternary
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RAST binary vs RAST ternary
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‘ Repeated 1,000 times, due to split randomness



RAST binary vs RAST ternary
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Window Acc Spec Prec Recall FI1 Score Window Acc Spec Prec Recall FI Score
4 beats i i - LF 3 4 beats 93,52 90,03 93,60 93,52 93,54
ats : : ? ; ? 6beats 93,38 89,77 93,46 93,38 93,40
8beats 92,73 88,60 92,88 92,73 92,79 8beats 9247 90,00 92,74 9247 92,56
10 beats 93,36 88,13 93,37 93,36 0937 10 beats 93,29 8947 93,35 93,29 93,30
16 beats 93,13 87,79 93,14 93,13 93,14 16 beats 92,99 89,02 93,07 9299 93,01
32beats 92,63 86,71 92,63 92,63 92,62 32beats 92,60 88,16 92,67 9261 92,62
64 beats 92,21 85,63 92,19 9221 92,19 64 beats 92,26 86,54 92,26 92,26 92,22
Window Acc Spec Prec Recall FI Score Window Acc  Spec  Prec Recall Fl1 Score
4beats 76,31 33,09 84,57 76,31 1219 4beats 77,04 31,79 8533 77,04 72,58
6beats 7598 32,88 84,63 7598 72,47 6 beats 76,70 30,82 8490 76,70 71,90
8 beats 76,37 33,33 8548 76,37 72,78 8beats 77,35 3140 86,05 77,35 72,83
10 beats 75,11 31,57 84,66 75,11 71,09 10 beats 76,24 29,69 86,40 76,24 70,95
16 beats 76,49 2494 86,21 76,49 70,17 16 beats 75,78 28,33 86,36 75,78 70,15
32 beats 76,11 23,57 86,70 76,11 69,73 32 beats 76,28 2749 86,33 76,28 70,75
64 beats 75,00 30,28 83,52 75,00 70,83 64 beats 75,74 2794 8640 75,74 69,98
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Window Acc Spec Prec Recall FI1 Score Window Acc Spec Prec Recall FI Score
4 beats 93,61 88,62 93,61 93,61 93,61 4 beats 93,52 90,03 93,60 93,52 93,54
6beats 9346 8833 9347 93,46 93,46 6beats 93,38 89,77 93,46 93,38 93,40
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10 beats 93,36 88,13 93,37 93,36 0937 10 beats 93,29 8947 93,35 93,29 93,30
16 beats 93,13 87,79 93,14 93,13 93,14 16 beats 92,99 89,02 93,07 9299 93,01
32beats 92,63 86,71 92,63 92,63 92,62 32beats 92,60 88,16 92,67 9261 92,62
64 beats 92,21 85,63 92,19 9221 92,19 64 beats 92,26 86,54 92,26 92,26 92,22

Window Acc Spec Prec Recall FI Score Window Acc  Spec  Prec Recall Fl1 Score
4beats 76,31 33,09 84,57 76,31 1219 4beats 77,04 31,79 8533 77,04 72,58
6beats 7598 32,88 84,63 7598 72,47 6 beats 76,70 30,82 8490 76,70 71,90
8 beats 76,37 33,33 8548 76,37 72,78 8 beats 7735 3140 86,05 77,35 72,83
10 beats 75.11 31.57 84.66 _ 75.11 71,09 10 beats 76,24 29,69 86,40 76,24 70,95

|16 beats 7649 2494 86,21 76,49 70.17 | 16 beats 75,78 28,33 86,36 75,78 70,15

32 beats 76,11 23,57 86,70 76,11 69,73 32 beats 76,28 2749 86,33 76,28 70,75

64 beats 75,00 30,28 83,52 75,00 70,83 64 beats 75,74 2794 8640 75,74 69,98

RAST binary

RAST ternary




Can a real-time and noise-robust approach
outperform the accuracy of a
state-of-the-art method?
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Classification of
5 types of ST segments
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Abstract

This paper describes an automated selection of the ST segment in 12 leads electrocardiogram (ECG) as well as its clas-
sification based on cross correlation. Our proposed method classifies five categories of ST segment which are (a) Up
slop (b) Down slop (c) Horizontal (Normal) (d) Concave (e) Convex using cross correlation process. We compare the main
ECG (patient ECG) ST segment with the above-mentioned reference ST segments. In this work we have used MIT-BIH ST
change database and European ST-T change database where every database contains minimum 30 min and maximum
1-h episode. Our method contains the following steps (1) Filtering ECG signal and Detrending it (2) R peak and S peak
detection (3) Starting and ending point detection of ST segment (4) Comparing with ST segment supervised data (5)
Classifying the ST segment. We have used total 1,34,879 beats where 58,331 beats from MIT-BIH ST change database and
74,609 beats from European ST-T change database. We have correctly selected total 126,608 ST segments. ST segment
classification accuracy is 88.20% for MIT-BIH ST change database and 96.18% for European ST-T change database. The
method confirms satisfactory performance with an overall accuracy of 92.1% which is helpful to the detection of major
heart diseases like myocardial ischemia.

Keywords Myocardial ischemia - Detrended electrocardiogram (ECG) - Cross correlations - ST segment ramification

1 Introduction helpful for physicians. Reduction of blood flow to our heart
for myocardial ischemia prevents the supply of enough

Itis important to extract the features of ECG signals to find
the weakness of the heart of a patient. Electrocardiogram
contains different types of wave such as P,Q R, S, T, U wave
(Fig. 1). Most of the time U waves are hidden. Q, R, S waves
are called QRS Complex. Due to heart rhythm, the shape of
ECG signal changes over time. At the end of S wave J point
starts, this detection is important for detecting myocar-
dial ischemia. Most of the studies focus on P, R and T wave
detection and T wave alternation [1].

It is not easy for physicians to extract features of ECG
from visual perception. So, developing an algorithm on
ECG signal for finding required features will be more

oxygen. This reduced blood flow sometimes partially
blocks our heart arteries. This myocardial ischemia may
also be called cardiac ischemia which can damage our
heart muscle by decreasing the ability of pump.

Myocardial ischemia is identified by monitoring end
point of S wave to start point of T wave. This part is a seg-
ment of ECG signal which is called ST segment. Our pro-
posed method focuses on this ST segment changes and
classifies it based on cross correlation method. Naturally ST
segment is isoelectric with slightly slanted upwards form
contained in the middle of ventricular depolarization and
repolarization (Fig. 2).
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RAST vs Baseline

overall accuracy score of RAST binary

+1.42 (93.52)

overall accuracy score of RAST ternary
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Summary

Changes in ST segment RAST in a nutshell
Ve Yy

Buffering © B

wroeey a binary or ternary detector of ST-segment
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Window Recall  FI Score Window Spec  Prec  Recall FI Score RAST VS Baseline

4 beats X 93,61 93,61 4 beats 3,52 90,03 93,60 9352 93,54
6 beats 93,46 93,46 6 beats 38 89,77 9346 9338 93,40
8 beats X 92,73 92,79 8 beats 2, 90,00 92,74 9247 92,56
10 beats 93,36 93,37 10 beats 29 89,47 9335 9329 93,30
16 beats 93,13 93,14 16 beats 2, 89,02 93,07 92,99 93,01
92,67 92,61 92,62

— | =Ene Can a real-time and noise-robust approach +1.51 (93.61)

outperform the accuracy of a overall accuracy score of RAST binary
e el R T T state-of-the-art method?

4beats 7631 33,09 8457 7631 72,79 4 beats 9 317 8533 71,04
6beats 7598 32,88 84,63 7598 7247 eats N 2 849 76,70

8beats 76,37 3333 8548 7637 72,78 3 beats > 36,05 77,35
10beats 7511 3157 8466 7511 71,09

|16 beats 76,49 2494 8621 7649 70,17 6 : "1 'n?,s 2
PmERIEETR | e i | ? | o +1.42 (93.52)
[ 9 overall accuracy score of RAST ternary
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