19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49

50

52

What Quality Aspects Influence the Adoption of Docker Images?

GIOVANNI ROSA, STAKE Lab, University of Molise, Italy

SIMONE SCALABRINO, STAKE Lab, University of Molise, Italy

GABRIELE BAVOTA, Software Institute, USI Universita della Svizzera Italiana, Switzerland
ROCCO OLIVETO, STAKE Lab, University of Molise, Italy

Docker is a containerization technology that allows developers to ship software applications along with their dependencies in Docker
images. Developers can extend existing images using them as base images when writing Dockerfiles. However, a lot of alternative
functionally-equivalent base images are available. While many studies define and evaluate quality features that can be extracted from
Docker artifacts, it is still unclear what are the criteria on which developers choose a base image over another.

In this paper, we aim to fill this gap. First, we conduct a literature review through which we define a taxonomy of quality features,
identifying two main groups: Configuration-related features (i.e., mainly related to the Dockerfile and image build process), and
externally observable features (i.e., what the Docker image users can observe). Second, we ran an empirical study considering the
developers’ preference for 2,441 Docker images in 1,911 open-source software projects. We want to understand (i) how the externally
observable features influence the developers’ preferences, and (ii) how they are related to the configuration-related features. Our results
pave the way to the definition of a reliable quality measure for Docker artifacts, along with tools that support developers for a

quality-aware development of them.
CCS Concepts: » Software and its engineering — Software notations and tools.
Additional Key Words and Phrases: Empirical software engineering, Software maintenance, Container virtualization, Docker

ACM Reference Format:
Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto. 2018. What Quality Aspects Influence the Adoption of Docker
Images?. In . ACM, New York, NY, USA, 29 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Deploying software and keeping it in operation is technically challenging. Moreover, the production environment
is rarely identical to the development environment, which increases the risk of failures, e.g., due to missing runtime
dependencies, or even security vulnerabilities.

Containerization allows developers to ship software applications along with dependencies and the execution en-
vironment. Thanks to containerization, it is possible to run the application on any system [5] and test it in the same
environment used in production. Docker! is one of the most popular containerization platforms used in the DevOps
workflow. Docker allows releasing applications with their dependencies through containers (i.e., virtual environments)
sharing the kernel of the host operating system. The specification file of a Docker image is called Dockerfile. DockerHub?

!https://www.docker.com/
https://hub.docker.com/

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

HTTPS://ORCID.ORG/0000-0002-5241-1608
HTTPS://ORCID.ORG/0000-0003-1764-9685
HTTPS://ORCID.ORG/0000-0002-2216-3148
HTTPS://ORCID.ORG/0000-0002-7995-8582
https://doi.org/XXXXXXX.XXXXXXX
https://www.docker.com/
https://hub.docker.com/

53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

is an online repository similar to those for source code, i.e., GitHub, which hosts a set of Docker images that can be
downloaded and used by developers.

When writing the Dockerfile for a given application, developers usually start from a pre-existing image containing
the basic dependencies needed. For example, to containerize a Java application, it will be necessary to provide the
Java Runtime Environment (JRE): Therefore, a base image with the JRE could be adopted. However, many alternative
images exist that provide the same (or analogous) dependencies, and developers find it difficult to search for Docker
images on DockerHub [4, 15]. In general, we can extract different features from Docker images, i.e., externally observable
features, that influence their adoption as they are what developers and image users can observe when they have
to choose a Docker image to use. Such features include, for example, the image size [18] related to the resources
that the image will use, and the presence of software vulnerabilities [24, 30, 39] which can lead security risks. Such
externally observable features are influenced by configuration-related features, i.e., mainly related to development aspects
of the Dockerfiles that might positively or negatively affect the resulting Docker image. Examples are the presence of
Dockerfile smells [20, 34] which can lead to the introduction of security issues [39]. Static analysis tools can support
developers to follow best practices in Dockerfiles [1, 12, 36] and, thus, minimize the presence of internal quality issues.
However, they may not be sufficient to assess the absence of code smells [23]. Despite such exemplary features and
the presence of a plethora of studies that focus on specific quality issues, the literature lacks a general view of what
are the externally observable and configuration-related features of Docker images and Dockerfiles. Similarly, to the
best of our knowledge, it is unclear (i) how externally observable features impact developers’ preferences when they
have to choose a Docker image, and (ii) the impact of configuration-related features on the external ones. In this
paper, we aim at filling these gaps. First, we reviewed 31 papers to define a comprehensive taxonomy of externally
observable features and configuration-related features features of Docker images and Dockerfiles. Then, we conduct an
empirical study on a dataset of 2,441 open-source Docker images. We aim at finding out what external features impact
the developers’ preferences in terms of actual adoptions (i.e., how frequently they appear in the FROM statements of
app-specific Dockerfiles) and perceived quality, intended as the prominence of a Docker image over others (i.e., number
of stars on DockerHub). Our results show that, as expected, official Docker images have a positive relationship with both
adoptions and prominence. Besides, both image size and the number of exposed secrets (i.e., a metric related to security)
negatively impact the developers’ preferences. Interestingly, the number of vulnerabilities only impacts the prominence
of the image, but not the actual number of adoptions. This result suggests that developers are aware that some problems
affect the quality of the images, but this does not change their behavior when they have to choose a Docker image to
use (mostly because they are not aware of alternatives [15]). Moreover, our results show that the less the number of
SLOC, the less the occurrence of vulnerabilities as also shown in previous studies [2, 25]. In the same way, also the
image size decreases when the number of LOCs are decreasing. This means that a smaller image size has a positive
impact on the developers’ preferences. Also, we found no relationship between the presence of Dockerfile smells and
any of the external features. Shell script smells, instead, have an impact on security-related features. However, there are
some exceptions. This is mainly because, as we performed a correlation study, it can not be implied causality based on
these results. For example, not all instructions (in terms of SLOC) directly impact the image size. For example, this not
applies when removing instructions like EXPOSE or LABEL. On the other hand, shell script smells are not always related

to security. It is proven that mature Docker images tend to have fewer security issues [30], despite the number of smells.

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

152
153

155

156

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Fig. 1. An example of Dockerfile from the official documentation

1 FROM ubuntu:18.04

, COPY . /app
+ RUN make /app
s CMD ["python", "/app/app.py"]

To summarize, we provide the following contributions:

e We define a taxonomy of metrics and attributes extracted from a total of 31 research papers through a literature
review;

e We conduct an empirical study on a total of 2,441 Docker images to evaluate which external features developers
consider important in terms of adoption or to positively evaluate Docker images;

e We find out what are the configuration-related features that affect the externally observable features that are

related to the adoption of Docker images.

The rest of our paper is organized as follows. In Section 2 we give some preliminary concepts to better understand
how Docker works, and also we discuss some of the relevant works from the literature. In Section 3 we describe the
procedure used for building the taxonomy of features and metrics of Dockerfile artifacts. In Section 4 we present
some hypotheses related to the impact of the quality features on developers’ preferences. In Section 5, we present our
empirical study to evaluate the impact of the quality features on the developers’ preferences. We discuss the results in
Section 6, and the threats of validity in Section 7. Finally, in Section 8 we provide the conclusion along with future

directions.

2 BACKGROUND AND RELATED WORK

In this section, we describe some preliminary concepts about Docker, its functionalities, and the tools typically used to

assess the quality of Docker artifacts.

2.1 Docker Basics

Docker is one of the most popular containerization technologies. The main purpose is to ship an application along
with its dependencies and execution environment. A Dockerfile is the specification file behind a Docker application, in
which there are source code lines that define the packages and dependencies needed by the application, in addition to
the configuration of the environment. An example of a Dockerfile is reported in Fig. 1.

The programming language used to define a Dockerfile is composed of specific instructions®. Each Docker instruction
performs specific actions, usually defined by shell script code. For example, the main Docker instruction with which
each Dockerfile begins is FROM, which defines a so-called base image from which the new Docker image defined in the
Dockerfile can inherit dependencies and configurations. Every Docker image can be used as base image and, therefore,
extended. The RUN instruction contains one or more commands that will be executed in a shell environment (i.e., RUN
<command>), that is by default /bin/sh -c. Starting from a Dockerfile, a Docker image containing the application is
created via the build operation. While building the image, Docker runs all the instructions in the Dockerfile (e.g., to

download dependencies and resources or to build the software product). The Docker image is then ready to be used to

3https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

157

158

160
161
162
163

164

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

execute the application. Each image is composed of layers, which are snapshots of the image during the build process.
Each layer is created by a Docker instruction that makes changes to the image itself. The main purpose is to make the
build process modular and to speed it up using caching: Instead of running all the instructions of a Dockerfile, it is
possible to save time and resources by re-using pre-built layers, when possible (e.g., avoid re-installing of software
packages). A Docker image is executed in a container, i.e., a lightweight virtual machine that as their own resources,
such as networks and storage volumes.

Each Docker image is uniquely identified by the digest, a hash value computed at build time based on the composition
of the image. However, it is common practice to assign a meaningful name (i.e., a tag) to the images, so that it is possible
to refer to them more easily. The image tag is usually composed of the name of the software installed in it (e.g., php), its
version (e.g., 7.0), and its flavor (e.g., slim).* The latter might denote differences in terms of non-functional requirements
(e.g., the reduced size). An example of a tag is "name: version-flavor" It is worth specifying that the same Docker
image can have multiple tags, thus the only way to identify unique images is using the digest.

Similarly to software dependency management systems (such as Maven), all the Docker images are distributed
through registries, from which developers can retrieve and use them. There are two kinds of registries: private and
public. Private registries are usually restricted to specific companies or usages (e.g., an internal registry of a large
software system to host and deploy images on Kubernetes), while the main public registry is DockerHub’. There are
four types of images hosted on DockerHub. First, we have official images®, maintained following the official images
review guidelines’. The aim is to ensure the overall quality of such images. Second, there are images from verified
publishers, i.e., publishers that can be trusted, but that do not necessarily produce official images that follow the

8 maintained

previously mentioned guidelines. Third, we have images that are part of the Docker Open Source program
by organizations that are members of that program. Last, we have the non-official images, which are provided by the
users of the Docker community.

The operation of uploading an image on DockerHub is called push. It can be performed using the command docker
push, where usually the developers build the Dockerfile, assign a tag to the resulting image, and upload it to the registry.
This means that the Dockerfile is not uploaded to the registry but only to the resulting image blob. In some cases, the
developers that maintain the DockerHub repositories add the link to the source Dockerfiles for the image or else the git
repository where the Dockerfile is maintained. For each hosted image, DockerHub provides a series of information
such as tags, last update, digest, description, and some metadata such as stargazers count (set by users) and the number

of pulls (i.e., how many times the image has been downloaded).

2.2 Support tools for Docker Images and Dockerfiles

Several tools are available for Docker images and Dockerfiles to support developers during development. The most
used is hadolint [1], a static analysis tool to check best practices’ in Dockerfiles. The tool parses the Dockerfile into an
equivalent AST and verifies a set of rules. Each rule, defined by an identifier, is associated with a writing best practice.
For example, the rule DL3008 checks for missing version pinning for packages installed via apt-get. The number

of rule violations is a common measure of the quality of Dockerfiles [5]. Other tools, instead, assess the security of

4https://docs.docker.com/engine/reference/commandline/tag/
Shttps://hub.docker.com/
®https://docs.docker.com/docker-hub/official_images/
"https://github.com/docker-library/official-images#review- guidelines
8https://www.docker.com/community/open-source/application/
“https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

4

https://docs.docker.com/engine/reference/commandline/tag/
https://hub.docker.com/
https://docs.docker.com/docker-hub/official_images/
https://github.com/docker-library/official-images#review-guidelines
https://www.docker.com/community/open-source/application/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

209
210
211
212
213

214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Docker images. For example, docker-bench-security'® is a tool that checks for various security best practices for the
deployment of Docker applications in production environments!!. Moreover, there is a built-in tool for vulnerability
scan on Docker images, i.e., the command docker scan'?, that checks for Common Vulnerabilities and Exposures13
(CVE). Unfortunately, the tool requires a premium plan for an unlimited number of scans. An open-source alternative is

the clair-scanner tool'*

, which also performs checks for the presence of CVEs on Docker images. Furthermore, some
tools allow performing reverse engineering on Docker images to extract the source code that created each layer. An
example is a tool whaler'®, which besides the source code, also extracts additional information such as the main user
account, the environment variables, and if there are exposed secrets inside the Docker image (i.e., sensitive information
such as login credentials). In our study, to extract the quality features of Docker images and Dockerfile, we adopt
hadolint to detect smells, clair-scanner for security vulnerabilities, and whaler to extract the additional information

from Docker images.

2.3 Studies on the quality of Docker Artifacts

SSeveral studies analyzed the quality aspects of Docker images and Dockerfiles.

Wau et al. [34] conducted an empirical analysis on the occurrence of Dockerfile smells, involving a large-scale dataset
of Dockerfiles. Their findings show that smells are very common in Dockerfiles, as they are present in 84% of analyzed
GitHub projects. Also, the number of smells is related to the programming language used. Moreover, popular and young
project repositories and projects with many contributors tend to have fewer Dockerfile smells. We considered in our
study some of the dependent and independent variables involved in their study as metrics to include in our taxonomy.
Then, we used those metrics to extract the measured features from the Docker images involved in our empirical study.
Their analysis is mainly focused on the quality assessment of Dockerfiles in terms of the occurrence of smells, while, in
our study, we extend the concept of quality to both external and configuration features that can be measured on Docker
images and Dockerfiles.

Zhang et al. [41] performed an empirical study on the impact of the evolutionary trajectories of Dockerfiles.
The evolutionary trajectories describe the frequency and type of modifications performed by the Dockerfile project
maintainers. Then, through a regression analysis, the authors evaluate their impact on the quality and image build
latency. The results show that different types of evolutionary categories have a different impact on quality. In our study,
we do not consider the change history of the Dockerfiles, but it is useful to evaluate the independent variables analyzed
in their study. However, we do not consider evolutionary trajectories, because they are correlated with the quantity of
best practices violations that we also consider.

Ksontini et al. [19] performed a study on refactoring operations and technical debts in open-source Docker projects.
As a result, they propose a taxonomy of refactoring operations, where the most applied are those reducing the size of
Docker images and improving the extensibility of docker-compose specification files. Also, a set of technical debts is
defined. The main difference with our taxonomy is that we propose a set of specific metrics and features measuring the
quality perceived by developers for Docker images and Dockerfiles. Moreover, we considered in our taxonomy the

features related to refactoring operations and technical debts, that are related to the quality, involved in their study.

WOhttps://github.com/docker/docker-bench-security

Uhttps://www.cisecurity.org/benchmark/docker
2https://docs.snyk.io/more-info/getting-started/snyk-integrations/docker/scanning-with-the-docker-cli
Bhttps://cve.mitre.org/

Yhttps://github.com/arminc/clair-scanner

Whttps://github.com/P3GLEG/Whaler

https://github.com/docker/docker-bench-security
https://www.cisecurity.org/benchmark/docker
https://docs.snyk.io/more-info/getting-started/snyk-integrations/docker/scanning-with-the-docker-cli
https://cve.mitre.org/
https://github.com/arminc/clair-scanner
https://github.com/P3GLEG/Whaler

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

Azuma et al. [3] conducted a study where they categorize self-admitted technical debts (SATDs) in Dockerfiles. As a
result, they proposed a classification identifying five classes and eleven subclasses of different Docker SATDs. Also, code
debt and test debt are common SATDs in Dockerfiles, where 42% of them are Docker-specific. The main difference with
our study is that SATDs are related only to Dockerfiles, whereas we also consider Docker images. Moreover, not all the
SATDs are related to code quality, but also to different non-functional aspects (e.g., design, testing, and maintainability).
We only included in our taxonomy only the aspects related to SATDs that can influence the quality of Dockerfiles.

Ibrahim et al. [15] conducted an empirical study to evaluate the differences among Docker images hosted on
DockerHub to support users to select the most suitable image to be adopted. Their results show that official images are
more popular than community images. They show that community images are more resource-efficient than the studied
software systems. Also, there are fewer security vulnerabilities than in their respective official images. In our study, we
evaluate the adoption of Docker images instead of popularity. In addition, we analyze a larger set of features extracted
from Docker images and Dockerfiles, defining also a detailed taxonomy of these features.

However, none of the previous studies evaluate the perspective of the developers and image users. The results of our
work provide the missing piece in terms of how the presence of smells [35] and other internal quality issues related to
the Dockerfiles [3, 19] impact on the adoption of Docker images. Moreover, our results are complementary to those of
Ibrahim et al. [15], providing a different perspective regarding the actual usages of the Docker images, considering at
the same time also the prominence of a specific Docker image over the others by taking into account the stargazers

count.

Table 1. Inclusion and exclusion criteria for the selection of primary studies.

Inclusion Criteria

IC1 The paper has been peer-reviewed (published either in a journal or
in the proceedings of a conference)

IC2 The elements treated are either Docker images or Dockerfiles

IC3 The paper title or abstract contains the keywords quality and Docker
in the title, or is explicitly referenced by another paper matching
this criterion and contains quality-related keywords (e.g., refactoring,
smell, bug)

IC4 The paper focuses on non-functional aspects of Docker images or
Dockerfiles related to quality

Exclusion Criteria

EC1 The paper is not written in English language

EC2 The paper is not published by IEEE, ACM, Springer, Elsevier

EC3 The paper focuses on aspects related to the architecture of Docker
images (e.g., storage system)

EC4 The paper is not presenting quality metrics for Docker images or
Dockerfiles

EC5 The paper is not a technical article published in a journal or in the
proceedings of an international conference/workshop)

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

348
349
350
351
352

354

355

357
358

360
361
362
363

364

What Quality Aspects Influence the Adoption of Docker Images?

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Fig. 2. Taxonomy of external and configuration features and metrics. For each feature, the number of references from the literature is

reported. For each metric, an up or down arrow indicates if it is positively or negatively correlated to the feature it measures.

Conf

iguration-related
features

. Update
Build Evolution
aliie Status
Code . . 8
Effort Status Contributions Project Activity Base Image Dependencies
H H ! Evolutionary : R :* H Num. of
HF o H . 14 trajectories 1 . 4 Base image e - of.
3 Build time ? Build success T category -3 Project age ? s up-o-date duut o;datg
H (C-1,C-3,C-6) H lependencies
: i 4 Num,of
iz Num. of % contributors
¥ layers
Script
Quality
|
T T T I T]
Best'Pra'cnces Size Insltruct{on External Metadata T .,
Violation Diversity Resources

@

Of

Num. of Avg. actions Usage of U §
shell script SLOC in instruction external sage o
P LABEL
violations block resources H
Num. of Num. of) u ¢
docker docker Instruction ISEE;\IQ\(;'O
violations instructions* : entropy
Presence of Usage of i: Usage of
§ temporary '§ additional ¥ build ARG
files smell script
Externally observable
features
Officiality Security Performance
‘ [1 1 ‘
Inherited Packages Best .
Image Type 5
g6 1yp Vulnerabilities Vulnerabilities Practices laoeied
® D ® OF @
4 s official Num. of Num. of) i
1 [SoflicE 3 Vulnerabilities 3 vulnerabilities ‘ Imaggés‘ln_erls ; Image size
(parent image) (currentimage) !
Num. of

¥ exposed secrets

@

Perc. of
comments
over LOC*

4 Usage of
+ EXPOSE*

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

3 DISCOVERING EXTERNAL AND CONFIGURATION FEATURES OF DOCKER ARTIFACTS

In this section, we present the preliminary study we conducted to collect the quality features and metrics of Docker
images and Dockerfiles. We first present the methodology we used for collecting and analyzing relevant papers on

Dockerfile quality, from which we aim at extracting knowledge, and then we present the obtained results.

3.1 Methodology

The goal of this preliminary study is to collect a set of configuration-related features and externally observable features
of Docker images and Dockerfiles. To achieve this, we conduct a literature review of scientific articles about Docker
quality, and we qualitatively analyze them to extract the information related to features and metrics. We have not
performed a rigorous Systematic Literature Review (SLR) on quality aspects because the topic is too broad and it would
have been outside the scope of this step (i.e., selecting quality metrics). We describe below, in detail, the procedure we
followed.

3.1.1 Identification of Relevant Articles. We searched for studies regarding Docker quality, as a general topic. To do this,
we relied on Google Scholar, and we used the generic query “docker quality”. We collected a core set of articles that
conduct studies on the quality of Docker images and Dockerfiles. Specifically, starting from the first paper returned by
Google Scholar, we considered all subsequent papers stopping when the title and abstract did not contain the keywords
docker and quality (~ 30 results). We defined a set of inclusion and exclusion criteria, reported in Table 1, for selecting
the articles of interest. After having collected the first set of papers, we read their titles and abstracts, and we verified
the criteria IC1, IC2, IC3, EC1, EC2, EC5. At this stage, if we were not sure whether any of the used criteria were met,
we kept the paper. Next, we used snowballing (i.e., we analyzed the relevant references of the selected papers) and
looked for more recent papers citing them by relying, again, on Google Scholar. We used the previously described
process to filter them and include, in the end, only the possibly relevant ones. We applied a less strict filter on the
title and abstract, also looking for words related to quality improvements (e.g., refactoring, technical debt, repair) or
quality-related aspects (e.g., smells, build failures, security, performance, bugs). Finally, we carefully read the whole
papers and filtered them using all the inclusion and exclusion criteria. In total, we analyzed 75 articles. We excluded 44
of them, and we were left with a total of 31 relevant articles to analyze in the next steps.

In terms of editorial collocation, most of the papers we selected were published in the proceedings of international
conferences (i.e., 23 of 31) while only 7 of them were published in journals. The most occurring venue is Mining Software
Repositories (MSR), with 5 articles, followed by International Conference on Software Engineering (ICSE) (4 articles). The
temporal collocation is between 2017 and 2022, and most of the articles are from 2019 (16 out of 31). This is expected,
given the fact that Docker was introduced in 2013 and, therefore, the scientific interest in the adoption of such a tool
has started increasing only recently, following the adoption by developers of open-source software, for which data are

easily accessible.

3.1.2 Qualitative Analysis Methodology. We analyzed the selected articles to find out the discussed metrics and features
related to quality from the literature. For extracting the information of interest, we adopted the card sorting approach [32].
We identified, for each paper, the quality features and the possible metrics defined to measure them. Two of the authors,
independently, assigned one or more tags to each article by distinguishing tags related to the quality features and the
ones related to the quality metrics. Given the set of assigned tags for each category (features and metrics), we analyzed
them, aiming at using a unique expression when the two evaluators used different tags for expressing the same concept

8

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

What Quality Aspects Influence the Adoption of Docker Images?

Table 2. Summary table of Docker configuration-related and externally observable metrics. The symbol * means that is a newly

introduced metric.

418

419

m
<]
=
[0€] (1001 4ajpy a1 Sutsn “5a) SFew NP0 AY) UT PAIIIIIP SUIO] $52998 10 S[ENUIPa1) Urof pasodxa Jo TquInN soonoead 1s0q Ajumoag stai0as pasodxa fo uny | E
¥z 12] (1003 42ppym 213 Sursn “§2) M/0 35Ty TOUTRIUOD PI[QRUI-JOOI SE SUNI FTLII OO Y3 JT INYL soonped 3s2q Aj1mdag 1004 51 405N 2SDUWIT mn
2
[66-LE ‘€5 ‘b2 ‘02 91 ‘ST] (°1g - °py) 1ouweds 4p)) Sursn (1) 29eun Sunmsax o) ut pappe safexored £q paanponur (a) sanIIqEIAUMA A1NAS JO TqUINN sopiqeIuA Kipnoag (280w juasing) sonqaouna fo wny | 3
[og sz “12] (°1g) 1ouueds vy Sursn (1g) sFewr aseq ay A[uo SULIGPISUOD (2) SIUIGRIUMNA AJLINDIS JO TIGUINN son[IquIdunA Ajunodg (aSowt juaavd) sauiiqaouma o wnN | =
[£5-T7 *96 ‘66 “T€ ‘62 '67 °07 ‘61 71 '§] PUPWwIOD A101STY 19520 AT} WOI} pauIeIqo s1aAe] sewr ot [[e Jo o71s oty dn Surppe Aq poindiuiod ‘sa14q ut parmseat 9715 aFewy et 10 A Jo 715 2215 oo mw
[1% b ‘01] qnpayo0q ut 28peq aSow] oyl Sy sey dBewn IO Ayl T INYL afewr 1x00(] 343 JO 10pUIA ogosy | 3
[6¢ “s€] (sofeur paseq-ueiqag 10j) a3epdn 1de Suruun sajepdn jo aouasard ayy 105 K10ys0dar safeped aremjos a Suppa) snjes aepdn satouapuadap aipp-fo-ino Jo wn
[0 ‘02 ‘61 ‘91] sajepdn Sey aSewn 10y quEpIO(U0 L10jsodar afewr 1a3p0(] 33 SunpAYD snjess ajepdn a10p-0j-dn 25w asvq s
L] M/0 3STVS D[YIN[IO Y UT Pasn ST UOHINISUT IS0dXT Y3 JT INYL UOBIUIWNIOP PO JO DOUISATL 4S0dXd Jo 28vs
W17 DOTS/siuauuos “u se p DOTS 1940 30 12quInu Jo d p 9pod jo aouasAIL 0T 4900 Spuaw0 fo 2104
L[iv] /0 35TV ‘S[YINPO(Y UI PASn ST UOTINIISUT O¥y Y1 JT INYL uoneanSyuod afewrr 10j suononnsur jo afesp OV pinq fo 28vsp)
J1%] /0 3§V ‘O[YIPO(Y} UI PaSN ST UOHINISUT DN Y3 JT IN¥L UoneanSyuod afewn 10§ suononsur jo afesp ANA fo 28vs1)
[17] M/0 ISV D[YIN[O0(Y} UT PAsN ST UOHINIISUT 3GV Y3 JT INYL ejepejow afewr 1oy suononysur jo afes) TAGVTJo 28vsy
[1%] /0 3574 D[LI9YI0(] Y} UT Pasn dIe ST() [PUIL1X® BUI[Ed SPULHILIOD TN3 10 133M Jt INYL 201081 [EUONIPPE Jo 3Tes)) sa0unosau jowaxa fo aSvsy) m
[1%] /0 357V4 “(ys - rm Furpua s1d1os yseq Suruuni “§a) wonnoaxs 1duds [[AYS € SUIEIU0D AYINIO Y3 JF INYL $901M0S21 [RUONIPPE Jo a5es) 1duaos ppuonppo fo a8vsp qnma
[1%] [L9YO0(] AY) UT PAST uOHINISUT J9Y0(] (nbrun) juazayrp oy Suowre paynduod Ldoxus uouueys fyrxopduwod a[yIaxpo(£doaua suoyonysuy | 5.
[1%) (3% £q payeredas) po]q wononsur 12d SPURIIIOD PaTEUAIEIUOd JO TqUINU AFEIIAY Arxarduwod S[yIpoq 2215 oo T m
1w v6] S[LI2NO0(T Y3 UI PasT (213 ‘Ad0? ‘NNY “F2) SUOHOINIISUI 1%00(] Y3 JO 12GUINU [2I0L, fyrxopduwod a[yIaxpo(suotonsul 4400p fo “wnN mﬂ
[19 €] SjuRIIII0d 2pod FurpnpIxs (DY) IpOd Jo SIUI JO TIGUINN SO I Jo 371 0075 | &
[¢2] (2] 0 10] &q paquivsap se yovordde onewoine-nuag S[ows 2pod Jo 2USII 110w sapf Kaviodui fo avuasaad | F
[T ‘P€ 02 ‘61 ‘€1-11 8 ‘€] 1003 Jujoppy £q P232239p (XXXXK-IS) SUOHE[OIA PIIE[DI-[[PYS JO I2qUINN S[[aWS 2P0 JO FOUISAIJ sjjauis 4200p Jo wnn s
[1% 5§ ‘02 ‘61 ‘C1-11 ‘8 ‘€] 100} Jutjopvy Kq P219919p (XXXX-TCI) SUOHPIOLA PAJR[2I-100(] JO JqUINN S[[PUS 9p0d Jo 2SI sppowss 1dLios 1ays fo wnN
[¥€] Axoysodar 193(01d a1y 0] JrUIIID AUO JSBI] I SPRUT LY} SIOIMLIUOD JO IIqUINN Ayanoe 1aforg/uonnjoa su01qLU00 fo wnN
[7¢] SPU0IS UT PAINSLAU JIUILIOD J$°] PUR 81l U9dMIaq passed awir], Ayanoe aforg/uonnjoas 250 0l
[1%] [0%] 10351y saSureyo Sursn paynduiod ‘103094 ATRUOTIN]OAD IR0 JO SuTISA[D) aum 1940 S[YINPO(JO I £1082109 53140193041 .]
[se‘e1 21 6] /0 357V ‘Pa19[dLi0d [nyssa00ns SeM plIMq AU It INYL snjeys pmg ssaoons pjing
[1%] puewImod £103sTy Ja300p Sursn 9Fewrs 1900 a1y} asodwod Jety) s194¥] Jo TAqUINN a8ewr 19y20(] Y1 Jo 11032 plg. 4] Jo wnn
[e¥ “T% ‘0 ‘61 1 1] PURWINIOD PTTNG J3520p U} JO WL} UOHNIIXD AU} WL PAINSLIL AU} PN 28w 19p0(Ay Jo dwr plmg awy pping
2ouaragoy ainduros 03 mopy apeuoney e
§§§§3§8§538833288388588FFFFFFFeieaenegnrereggeeggeges

467

468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499

501
502

504

505

508

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

(e.g., “image size” and “size”). The two evaluators discussed the cases in which there were conflicts on the assigned tags,
aiming at reaching a consensus.

After having completed the tag assignment, we organized the tags related to the quality features in a first version of
the taxonomy. Then, we added to the taxonomy, as children of the leaf features, all the tags related to the metrics we
identified for such a feature.

The taxonomy is divided into two parts: externally observable features, i.e., what image users can observe, and
configuration-related features, i.e., aspects related to Dockerfiles and the build process of Docker images. The former,
mainly measured on the Docker image itself, is what the adopters of the image (i.e., artifact) immediately can see from
DockerHub or from the image metadata. The latter are mainly measured by analyzing the Dockerfile, which is what the
developers primarily see (i.e., source code), or related to the build process which involves both the Dockerfile and the
image (e.g., build time). We assigned an up or down arrow to report, for each metric, if it is positively or negatively

correlated to the measured feature.

3.2 Taxonomy of Quality Features and Metrics

The resulting taxonomy is described in Fig. 2. The boxes with italicized text indicate the features, while the others
indicate categories of features we introduced in the taxonomy. Also, in Table 2, we report the quality metrics and the
papers resulting from the literature review. The numbers in the circular badges, instead, indicate the number of papers

that use the feature. Next, we describe the categories we identified for both configuration and external features.

3.2.1 Configuration-Related Features. Configuration features are all the features related to the Dockerfiles behind the
Docker images and the build procedure which involves both the artifacts. Such features are not directly perceived by
the users of a Docker image, similar to how internal code quality aspects (e.g., the maintainability of a software system)
are not directly perceived by the end users. However, they are important for the Dockerfile developers, and they might
eventually impact some of the externally observable features which are, instead, directly perceived by the users. We
identified the following categories:

Build. With this category, we indicate the aspects related to the build process of the Dockerfile. A slow build, for
example, increases the time needed to update the software in production if continuous deployment is adopted. The
Effort feature represents the resources involved in the build process (e.g., time) [41], while the Status feature indicates
the success or failure of the build process (i.e., if Docker image builds or not) [35].

Evolution. This category embraces the aspects that are related to the evolution of the Dockerfile. The Code
Contributions feature indicates the modifications made to the Dockerfile in time. The Project Activity feature, instead,
describes the aspects related to the development process, such as team composition. Large development teams may be
better at writing good quality Dockerfiles (i.e., more technical knowledge) [34].

Script Quality. This category contains all the features strictly related to the quality of the source code. The feature
Violation of Best Practices represents the presence of Dockerfile smells [34]. The feature Dockerfile Size represents the
aspects related to the size of a Dockerfile, such as the number of lines of code. The Instruction Diversity feature is
related to the homogeneity of the source code: A more heterogeneous code (i.e., source code that has many different
instructions) can lead to misleading developers [41]. The External Resources feature regards the usage of resources
not provided in the original project repository, such as libraries or other files downloaded from remote servers [41].
The feature Metadata describes the use of meta-data in the Dockerfile, such as environment variables or the LABEL
instruction [41]. Finally, the feature Documentation describes the use of documentation in the Dockerfile [41]. Code

10

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

536

538

539

541

542

544
545
546
547
548

550
551

553
554

556
557

559

560

562
563

565

566

568
569

571
572

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

comments are an example of documentation. If the script quality of the Dockerfile is low, it is intuitively more likely
that different kinds of issues arise (e.g., security-related) given the lower maintainability [20, 34].

Update Status. This last category contains the features that are related to the maintenance status of a Dockerfile.
The feature Base Image captures the update status of the Docker image used as a base of the Dockerfile. On the other
hand, the feature Dependencies is about the updated status of additional software packages used in the Dockerfile. If a
Dockerfile is not maintained, it is more likely that some of the dependencies are out-of-date, and this might negatively

impact the security of the whole image.

3.2.2 Externally Observable Features. The external features are related to Docker images, the software artifacts that
derive from a Dockerfile after the build process. Such aspects might be directly perceived by developers who use the
image if, for example, they adopt it as a base image. We identified the following categories of features:

Officiality. With this first category, we indicate the degree of officiality of the image or of the developer(s) who
published it. It is reasonable to assume that official images, or images published by trusted developers, are perceived
better by developers because they are preferred over unofficial ones [10].

Performance. The way in which Docker images use the available resources might be crucial for developers since it
also impacts the cost of operation. Image Size, specifically, is the only relevant feature related to this category, and it
indicates the storage needed to use the image. Developers tend to dislike images bigger than necessary (e.g., if they
contain unnecessary software packages) [20].

Security. We include, in this last category, all the security-related aspects of a Docker image. The Best Practice
feature concerns the adoption of the main security best practices of a Docker image. An example of best practice in
terms of security is the usage of a user different from root, as the default user, when the image is executed. The Inherited
Vulnerabilities and Packages Vulnerabilities features are related to the number of security vulnerabilities found in the
image based on the Common Vulnerabilities and Exposures (CVE) database. The first one only concerns the parent image
of the actual Docker image (i.e., the base image used in the Dockerfile), while the second one concerns the additional
software installed in the image. Developers must prefer images that provide all the necessary security-related features,

to avoid security risks [21, 24].

3.2.3 Metrics. Table 2 describes in detail the metrics defined in our taxonomy and the features that they aim at
capturing. While most of them were already defined in the papers we analyzed, we introduced some new metrics and
variations of existing ones to better measure some of the features that compose our taxonomy. We describe below only
the differences with respect to the existing ones, which are summarized in Table 2.

Configuration-related features. We introduced Num. of docker instructions, a new metric for measuring the Size of
a Dockerfile. Such a metric counts the number of Docker instructions in the Dockerfile. Since each instruction of a
Dockerfile will be converted to an image layer, a Dockerfile having many instructions will generally have a higher
number of layers. It is worth noting that the number of instructions might be lower than the LOCs since a single
instruction might encompass many lines. For the feature Metadata, we defined two more metrics: Usage of ENV, which
measures the number of environment variables used in the Dockerfile, and Usage of build ARG, which measures the
number of build arguments. Such metrics are inspired by Usage of LABEL [41], which indicates the presence of the
LABEL instruction in Dockerfiles. The metrics Perc. of comments over LOC and Usage of EXPOSE are additional measures
for the Documentation feature. The first one is a variation of a metric defined by Zhang et al. [41]: While the original
version measures the absolute number of comments, our metric computes the percentage ratio between the number of

comments and LOC. It is expected that the ratio, more than the absolute number of comments, is important to determine
11

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

Fig. 3. Dataset extraction procedure. The labels at the bottom show the number of selected instances up to that step.

Repository Filtering by Clustering of Count

mining language base images num. of adoptions

GitHub mining
using GHSearch

Duplicate
Deletion

annotation
of Dockerfiles

Sampling

Selection
of a sample of
10 apps

Assigning
clusters

i Stratified random
sampling

to what extent the Dockerfile is well-documented. Usually, developers tend to give an explanation comment of what
each instruction does [3]. The last metric we introduced, i.e., Usage of EXPOSE, is boolean, and it checks the presence of
the EXPOSE instruction. Such an instruction has the purpose of documenting the ports to be used when the Docker
container will be executed!®.

Externally observable features. We defined two new metrics for the Security/Best Practices feature, i.e., Image user
is root and Num. of exposed secrets. Image user is root is a binary metric that indicates whether the principal user of the
image is root or not: A good security practice, indeed, is to use containers for which the main user does not have root
privileges (i.e., non-root user). Num. of exposed secrets measures the estimated number of secrets (e.g., passwords or
private keys) stored in the image: A good security practice is to avoid exposing sensitive data [30]. Therefore, the lower

such a metric, the higher the security.

4 EXPLAINING DEVELOPERS’ PREFERENCES
Software revdevelopers implicitly or explicitly express their preferences on Dockerfiles in several ways. They can do it
explicitly, by starring the Docker image on DockerHub, or implicitly, by adopting the image in their own Dockerfiles. In
both cases, we hypotize that the external features we identified from the literature in the previous section influence the
developers’ preferences. Specifically, we formulate the following hypoteses:

Hypotesis 1. Developers prefer images with fewer security issues.
We expect that developers are, to some extent, aware of the security issues of the images they use and, therefore, they
prefer alternatives that do not have security issues (or that, in general, have fewer of them).

Hypotesis 2. Developers prefer smaller images.

We expect that developers prefer Docker images that, by offering the same features (i.e., installed software and

dependencies), use a lower amount of space.

https://docs.docker.com/engine/reference/builder/#expose

https://docs.docker.com/engine/reference/builder/#expose

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

676

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Hypotesis 3. Developers prefer official images.

We expect that developers prefer official images over non-official ones since they are guaranteed to provide a minimum

quality level.

We also hypotize that configuration features related to the Dockerfiles influence external features. Developers that use
Docker images do not directly perceive configuration features (e.g., they are not aware of the LOCs of the Dockerfile).
Therefore, we assume that configuration features only have an indirect influence on the developers’ preferences.

Specifically, we formulate the following hypoteses:

Hypotesis 4. The number of layers and the adoption of bad practices increase the size of a Docker image.

We expect that features related to the build effort and script quality are correlated with an increase in the final Docker
image size on disk. The composition of a Docker image (i.e., layers) is directly related to the build effort in terms of
resource usage. Fewer layers might be related to both less build latency and less storage used. Besides, we expect that
a Dockerfile written following best practices can produce a more optimized in terms of resources since some best

practices are precisely aimed at this.

Hypotesis 5. The complexity of a Docker image and bad practices in its development process increase the number

of security issues.

A complex Docker image might result in low Dockerfile quality. Thus, we expect that a more complex Docker image
leads to a higher number of security issues (among other issues), as it has been observed for normal source code [22].
Complexity metrics are related to the presence of security vulnerabilities, together with the developers’ activity
(e.g., team size) [29]. Thus, we also expect that bad practices in the development process can increase security risks in

the Docker images.

We do not formulate hypoteses regarding the officiality of the Docker image since the process behind the assignment

of the “official image” badge is well-known’.

5 EMPIRICAL STUDY DESIGN

The goal of the study is to understand which external features directly influence the developers’ preferences and
which configuration features indirectly do so (by directly influencing external features). The context consists in 2,441
open-source Docker images used as base images for 10 software applications hosted on GitHub, and on 299 Dockerfiles
manually associated to a sample of Docker images from 2,441.

Our study is steered by the following research questions:

RQq: Can the externally observable features explain the developers’ preference for a Docker image? With this first
research question, we want to know what external features, i.e., those related to the Docker image, allow to
explain the adoption and the preference expressed by the developers in terms of adoptions (how many times
a Docker image is used as a base image in Dockerfiles) and perceived quality (prominence measured as the
number of stars on DockerHub). This research question will allow to verify or disprove hypoteses 1, 2, and 3.

RQg2: Are configuration-related features correlated with externally observable features for Docker images? With the

second research question, we want to understand which configuration features directly influence the external

13

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

features of a Docker image and, thus, indirectly influence the developers’ preferences. This research question

will allow to verify or disprove hypoteses 4 and 5.

5.1 Data Collection

The context of our study is composed of objects, i.e., Docker images and their related Dockerfiles. In our study, we built
two distinct datasets from the open-source codebase: Dyyg and Dgre. Dimg is composed of 2,441 instances of Docker
images, associated with the respective number of adoption and the number of DockerHub stars. Dy contains a subset
of the images from Djyg (299) manually associated with the Dockerfiles used to build them. We use Dy, for answering

RQq and D¢ for RQ2. The procedure we used for building such datasets is summarized in Fig. 3 and detailed below.
5.1.1 Dataset of Docker Images and Developers’ Preferences (Dimg).

Mining Adoptions of Docker images. Our main objective with Diyg is to annotate a set of Docker Images with their
number of adoptions in downstream Dockerfiles and DockerHub stars. While the latter can be easily achieved by using
DockerHub APIs, the former requires mining existing software repositories. To do this, we use GHSearch [6], which
crawls data from open-spurce software projects hosted on GitHub providing metadata and statistics such as commits,
contributors, stargazers and the other information related to the repository. We extracted the metadata for GitHub
project repositories, as provided by the tool, starting from the date when Docker is introduced, i.e., 2013, to January
2022. Next, we selected only the repositories where "Dockerfile" is among the language used to exclude projects that do
not use Docker. As a result, we obtained a total of 50,487 projects. Then, we collected all the Dockerfiles from such
projects (182,375, in total) and we extracted their content at the latest snapshot. We parse the Dockerfiles obtained, and
we extract all the base images used (i.e., the ones which follow the FROM instructions). As a result, we obtained a list of
base images used. Finally, we get the unique images, and we count, for each of them, how many times they occurred.
The final result is a set of 20,425 Docker images used as base images associated with the respective number of adoption

(i.e., how many times they appear in the FROM instructions).

Annotating Docker Images with Application. Besides having the number of adoption for the collected Docker Images,
we also want to annotate them with the software they provide and its version. This is necessary because, to answer
RQ1, we will need to group together all the images providing the same features and explain the developers’ preferences
among them, rather than among images providing different features. Indeed, let us imagine that we have two Docker
images providing an Apache HTTP server, with 1,000 and 900 adoptions, respectively, and an image providing Nginx,
with 2,000 adoptions. We do not know whether the higher number of adoptions is due to the fact that developers prefer
the Docker image providing Nginx or they simply prefer Nginx. In other words, the number of adoptions between the
two images providing Apache HTTP is comparable and might depend on the differences between the images, while the
number of adoptions of the image providing Nginx can not be mixed with the others. The same is true for different
versions of the same software: Developers might prefer a given version of Apache HTTP and base the choice on it
rather than on the non-functional aspects of the Docker image. Therefore, we assigned each image with an application
name (e.g., “Tomcat”) and an application version (e.g., 7.0). To do this, we use a semi-automatic procedure. First, we
removed all the instances where the Docker image repository name contains special characters that are not allowed by
the Docker naming convention (i.e., non-alphanumeric symbols or placeholders). Thus, from a total of 182,375 instances,
we retain 141,583 of them. Next, we extracted the words contained in the image names by performing a string split over

the separators (i.e., dash or underscore). For example, from alpine-maven-builder-jdk-8, we extract the words alpine,
14

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

maven, builder, jdk and 8. The next step is to select, among all the obtained words, only those that are alphabetic (i.e.,
do not contain symbols or numbers) and contain at least 3 characters. We do this to discard words that are not useful.
Examples are go, os, js as we select Docker images containing applications and not OSs and programming languages.
We selected all the words appearing in at least five image names, and we obtained a total of 338 unique words. Each of
the selected words is a candidate application name. We discard word (i.e., candidate applications) with less than five
occurrences to avoid having too small groups for the analysis performed in RQ4 and include software that is provided
through a limited number of Docker images.

Next, we selected and assigned a set of tags (i.e., clusters) to group each base image of our dataset by the contained
application. For example, we assign the label tomcat to all the images that provide the tomcat web server. We used the
dataset of Docker images obtained in the previous step to achieve this. At this point, a manual process is required to
identify if a word corresponds to an application name to group similar Docker images (i.e., clustering). This is done by
manual annotation of all the extracted words that occur at least 5 times, i.e., there are at least 5 unique Docker images
containing those words, for a total of 338. Then, we manually check the candidate application names, and we select only
the ones that are actual applications. We discard operating systems/Linux distributions (e.g., ubuntu, debian, alpine),
programming languages (e.g., python, java), and other commonly used words which do not pertain the application
(e.g., build, base, dev, runtime, aws, platform). Examples of valid words we selected are nginx, maven, jenkins, chrome,
dotnet, envoy, mysql. In some cases, different words could refer to the same application (e.g., postgres and postgresql).
In such cases, we manually created clusters of names and associated them with a unique name (e.g., postgres, in the
previous example). As a result, we obtain a total of 73 different applications associated with all names through which
they appear in the Docker images. Finally, we associated each Docker image with a list of applications it provides by
simply performing string matching with the words analyzed in the previous step. If a Docker image was associated
with no application, we discarded it. This happened, for example, for Docker images providing Linux distributions,
as previously explained. We manually analyzed cases in which a Docker image was associated with more than an
application, and discarded the cases in which more than an application was actually provided. After this step, we obtain
our final dataset of 2,776 Docker images (covering a total of 12,674 adoptions). We also annotate each image with the
version of the application provided. To do this, we split the Docker image name as previously done to identify the
application name, and we select the word with the highest number of numeric characters. We manually check if the

version assigned to each image was correct.

Feature Extraction. We added to the dataset all the features needed to answer our research questions. Firstly, for
each Docker image, we extracted the number of stargazers (i.e., stars) by using the DockerHub APIs'’, to compute
the perceived quality (i.e., the prominence of a Docker image over the others, used as a dependent variable for RQ1).
We computed most of the metrics related to the external features from the literature we identified in Section 3.2, with
some exceptions and small variations. We describe below only such cases. We did not consider the metric Presence of
temporary files smell, because it can not be exactly measured automatically but only with a semi-automatic approach,
as described in the reference article [23]. Moreover, we merged the metrics for the feature Inherited Vulnerabilities and
Packages Vulnerabilities in Num. of vulnerabilities. We did this because, given a Docker image, we could not distinguish
the layers inherited from the base images (i.e., parent) and the additional layer added on top of them with the specific
Dockerfile used, since we do not have such a Dockerfile in Diyg. To compute the Num. of vulnerabilities, we used the

Clair tool. For the metrics in the category Security/Best Practices, we adopt the Whaler tool, which returns Image user is

https://docs.docker.com/docker-hub/api/latest/

https://docs.docker.com/docker-hub/api/latest/

781
782
783
784
785
786
787
788
789
790
791
792
793

794

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

root and Num. of exposed secrets. To measure the Officiality feature, we implemented a web scraper to parse the presence
of the label “Official Image” on DockerHub.

Table 3. Summary of the selected applications and sampled instances from the dataset.

Application Instances Sample

Nginx 344 78
Cuda 229 52
Maven 177 40
Tomcat 147 33
Postgres 143 32
Redis 79 18
Elasticsearch 65 15
MySQL 65 15
fluentd 58 13
Dotnet 12 3
Total 1,319 299

5.1.2 Dataset of Dockerfiles associated with Docker Images (Dsyc). To perform the analysis required in the context
of RQy, we need to have, for each Docker image, the source Dockerfile. Thus, we defined a second dataset, namely
Dgre, which contains a subset of the Docker images from Djng, in which each instance contains the content of the
Dockerfile used to build it. To achieve this, we first randomly extracted a sample of Diyg for the applications with the
highest number of Docker images. We filtered Dy and selected only the Docker images for such selected applications
obtaining a total of 299 instances. Manually annotating the Dockerfile from a Docker image is challenging: In most
cases, a direct link to the Dockerfile is missing. Thus, we performed a random sampling selecting 299 total instances
with a confidence level of 95% and 5% margin of error. Finally, we manually annotated the Dockerfiles related to each
remaining Docker image. To achieve this, for each image, we looked at the DockerHub repository. If there was a direct
reference to the Dockerfile, we assumed it was the one used to build it. Otherwise, we performed a Google search using
the name of the image plus the word “Dockerfile” (e.g., nginx Dockerfile) looking for the source of the Dockerfile related
to that image. If we obtained no results, we replaced the Docker image with another randomly selected, for the same
application, to avoid hampering the representativeness of our sample. We report in Table 3 the total number of selected
applications and the sampled number of instances, i.e., the different groups of comparable Docker images and their
number, involved in our experiment. In detail, we have 10 different groups having a number of Docker images varying
from 12 (dotnet) to 344 (nginx). We have a total number of 2,441 open-source Docker images, and for a subset of them
(299) we also have the source Dockerfile from open-source codebases..

Also in this case, we computed on Dg all the metrics related to the configuration features that were reported in
Section 3.2, with some exceptions and small variations. We describe below only such cases. We excluded from the
metrics related to the feature Update Status because we could not have a reliable measure for the metrics Is base image
up-to-date and Num. of out-of-date dependencies. The update status of the base image and the package dependencies,
indeed, depends on the time at which the adoption was made in the downstream Dockerfiles, and it changes over
time. We cannot trace back the time at which one or more dependencies (possibly) became out-of-date in a Docker
image and, thus, report if it was so at the time of adoption. Also, we do not compute the metric Evolutionary trajectories

category [41]. This is because, in the original study, the authors show that this measure correlates with the build latency
16

833
834
835
836
837
838
839
840
841
842
843
844
845
846

847

860

868
869
870
871
872
873
874
875
876

877

879
880
881
882
883
884

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

and the number of best practice violations, which we directly compute (i.e., Build time, Num. of docker smells, and Num.
of shell script smells). For the metrics of the category Script Quality, we use the Hadolint tool to detect violations of best
practices. For the other metrics, we use a modified version of the parser from the replication package of the analysis
conducted by Schermann et al. [28]. Specifically, we added the extraction of code comments, as their parser does not
retrieve them. For the metric of the Project Activity feature, we use the tool PyDriller to extract data from the source
repository of each Dockerfile. For the Build category, we use the Python Docker wrapper'® to build the Dockerfiles and

measure their build time.

5.2 Experimental Procedure

This section details the experimental procedure we follow to answer our research questions.

5.2.1 RQq: Can the externally observable features explain the developers’ preference for a Docker image? To answer RQ1,
we extract the external metrics described in our taxonomy (Fig. 2) on the dataset Diy,g. We removed all the instances
with invalid metrics values (e.g., Clair scanner fails on some Docker images), obtaining a total of 2,441 valid instances
for the analysis. Next, to evaluate what are the external features that affect the developer preferences for a Docker
image, we build two mixed-effect generalized linear models [9]. In detail, we use the Imer function from the R library
ImerTest. Each instance of the dataset contains the value of the metrics for the external features, the application name
and version, the number of adoptions, and the number of DockerHub stars. We use as random effects the application
name and version. We use as random effects the application name and version. In this way, different Docker images
regarding the same application at the same version, are considered in the same group. We do this because we want to
take into account the fact that developers might have different levels of preferences for Docker images that provide
different software applications, based on the characteristics of the applications themselves, regardless of the other
image-related factors evaluated in our study. For example, the images jdk-8-alpine and jdk-8-slim will be in the
same group, while jdk-9-slim and jre-8-slim will belong to other groups. The dependent variables, or outcomes,

are the following:

e Number of adoptions: the actual usage in software repositories of a Docker image (i.e., objective preference),
measured as the occurrences of a specific Docker image (i.e., name and tag) in user-defined Dockerfiles (as
reported before);

e Number of DockerHub stars: the number of stars of a Docker image reported on DockerHub. This measures
the prominence of a Docker image over others expressed by the developers. The number of adoptions and the

number of stars tend to be directly proportional (rs = 0.23, p-value < 0.05).
The independent variables (fixed effects in the model) are the following:

o Image size: the storage size of a Docker image, measured in bytes;

Num. of layers: the total count of layers that compose a Docker image;

Num. of vulnerabilities: the overall number of detected security vulnerabilities from a Docker image. All the
vulnerabilities are considered (i.e., from both parent and current image layers);

o Image user is root: whether the docker image uses the root account as the primary user;

Num. of exposed secrets: total number of exposed secrets (i.e., sensitive data) detected in the Docker image;

Bhttps://pypi.org/project/docker/

https://pypi.org/project/docker/

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

o s official: the image is part of the Docker official images program, thus maintained following the official Docker

guidelines.

All the independent variables refer to the external features described in Section 3.2. Before we performed the regression
analysis, we applied some transformations to our dataset. First, we perform a correlation analysis to remove the highly
correlated variables using a threshold of r¢ > 0.90. None of the variables have been removed as their correlation
coefficient remains below the threshold. Next, we computed the skewness coefficient of the distribution of all the
variables. To normalize skewed distributions, we apply a logarithmic transformation to both dependent and independent
variables (i.e., log(x + 1) since they are all non-negative. In our case, all the variable distributions are skewed (the
lowest skewness value is 1.8, where a coefficient close to 0 means that the distribution is not skewed). Moreover, we
apply a min-max normalization to fix the variables on the same scale. As a result of our analysis, for each variable of
our model, we report the significance value (i.e., p-value), the standard error, the coefficients, and the polarity of the
relationship of that coefficients. We consider a coefficient important for determining the developers’ preferences if
it is statistically significant, i.e., p-value < 0.05. To evaluate the model fit, we report the adjusted R?, using the rsq R
package. It describes the variation explained by the model. Moreover, we report the effect size, expressed by measuring
the Pearson correlation coefficient between pairs of independent and dependent variables [7] for the cases in which the
relation, reported by the model, is statistically significant (i.e., p-value < 0.05). We also report Cohen’s d effect size

magnitude, obtained from Pearson’s r by using the formula d = -2 [27].

Vi-r?

5.2.2 RQqu: Are configuration-related features correlated with externally observable features for Docker images? To answer
RQy, we compute the metrics related to the configuration features of our second dataset, i.e., Dgyc. To perform the
regression analysis on Dgyc, we built three mixed-effect generalized linear models. To explain how the external features
are affected by the configuration features, we build a model for three of the external factors analyzed in RQq, as
dependent variables, i.e., Image size, Num. of vulnerabilities, Num. of exposed secrets. We exclude from our regression
modeling the external features Is official and Image user is root because the former is not an objective measure that
depends on a set of non-quantifiable aspects, i.e, is assigned by a team of Docker reviewers based on the official
guidelines” and the latter can be directly controlled by the developer by adding a specific line of code. Also in this
case, we consider the application name and version as a random effect. The independent variables (fixed effects in our
models) are the metrics for the configuration features computed on the selected sample of Docker images (i.e., Dgrc). In

detail, the independent variables are the following:

o Num. of docker smells: number of best practice violations for Dockerfiles, extracted using the tool hadolint;

o Num. of shell script smells: number of best practice violations for shell script code used in Dockerfiles, extracted
using the tool hadolint;

e SLOC: the total number of source lines of code (i.e., without code comments and blank lines) in the Dockerfile;

o Layer size: the average number of commands executed in a single instruction block, to measure how much they
are nested (i.e., a proxy for the source code complexity);

o Num. of docker instructions: number of the used Docker instructions (e.g., RUN, FROM, etc.) used in the Dockerfile;

o Instructions entropy: the Shannon entropy computed using the different Docker instructions used in the Docker-
file, as a measure for its complexity (i.e., heterogeneity of the Dockerfile).;

o Usage of additional script: boolean flag that indicates whether or not the Dockerfile uses additional shell scripts,
i.e., it executes external scripts during the build of the Docker image;

18

937
938
939
940
941
942
943
944
945
946
947

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

976
977
978
979
980
981
982
983
984
985
986
987

988

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

e Usage of external resources: boolean flag that indicates whether or not the Dockerfile uses external resources,
i.e., it fetches additional data from remote sources (i.e., URLs) during the build of the Docker image;

e Usage of ENV: boolean flag that indicates whether or not the Dockerfile uses environment variables, i.e.,
identified by the instruction ENV;

o Usage of build ARG: boolean flag that indicates whether or not the Dockerfile uses build args, i.e., identified by
the instruction ARG;

o Project age: the age of the repositories that the Dockerfile belongs to, measured in seconds elapsed between the
first and the last commit;

e Num. of layers: the number of layers that compose the Docker image, measured after the Dockerfile build;

Based on our hypotheses reported in Section 4, we define a model for each dependent variable, based on what
we reasonably expect to impact each external feature. Specifically, for the outcome Num. of exposed secrets, we have
as independent variables Num. of docker smells, Num. of shell script smells, Instructions entropy, Usage of additional
script, Usage of external resources, Usage of ENV, and Usage of build ARG. For the outcome Num. of vulnerabilities
we use as independent variables: Num. of docker smells, Num. of shell script smells, SLOC, Usage of additional script,
Usage of external resources, Usage of ENV, Project age, and Num. of layers. Finally, for the outcome Image size, we have
as independent variables: SLOC, Num. of docker instructions, Layer size, Usage of additional script, Usage of external
resources, and Num. of layers.

We perform the same preprocessing steps done for answering RQ1. First, we performed a correlation analysis to
remove highly correlated variables (threshold of rs > 0.90), but none were removed. Next, we evaluate the skewness
coefficient. To normalize skewed distributions, we apply both square root and log transformations. In particular, we
apply the log-transformation on the higher skewed distributions (skewness > 1.8, i.e., the metric Num. of exposed secrets),
while the square root on the less skewed ones (skewness < 1.8). After this, we apply the min-max normalization to all
of our variables. For each of our models, we compute the p-value, the standard error, the coefficients, and the polarity of
the relationship of the coefficients with the dependent variable (i.e., positive or negative). We consider a coefficient
important for the dependent variable if the significance, i.e., p-value, is statistically significant (p-value < 0.05). As in
the previous RQ, we compute the adjusted R? for each model, the effect size reported as Pearson’s r between pairs of
independent and dependent variables [7] and Cohen’s d magnitude obtained from the correlation coefficient [27]. We do
not report the results for all such models in the paper for readability reasons, but we discuss the main results, focusing

on the relevant relationships we found. The detailed results are publicly available in our replication package [26].

5.3 Replication Package

Both the datasets (Dimg and Dsrc), along with the scripts we used to answer both our research questions, are publicly

available in our replication package [26].

6 EMPIRICAL STUDY RESULTS

In this section, we report the results of our empirical study. Fig. 4 reports a summary of the relationships we found among
configuration-related features and externally observable features, and then among external features and developers’
preferences based on the results obtained from the two RQs. Connections indicate that the left-hand variable is significant

in the model for explaining the right-hand variable. The size of the arrow represents the magnitude of the effect size

19

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

Conference acronym XX, June 03-05, 2018, Woodstock, NY Rosa et al.

Fig. 4. Descriptive plot of the relation between configuration-related features, externally observable features, and preferences for
Docker applications. The size of the arrow indicates the effect size magnitude (i.e., very small, small, medium, or large). The polarity
of the relationship is reported with plus (positive) and minus (negative) signs.

e is ROOT e

SLOC Number of
e vulnerabilities °

Number of
e DockerHub stars
mage size

additional script e I

Usage of

©
N\,

Number of 0 \
/ °

e Number of
’. Number of

exposed secrets
adoptions

Number of shell ‘
script smells e

ey © | isofficial
entropy

(i.e., very small, small, medium, or high). The polarity of the relation is reported through a plus (positive) or minus

(negative) sign.

6.1 RQj: Can the externally observable features explain the developers’ preference for a Docker image?

We report in Table 4 the results of the performed regression modeling to explain the preferences for Docker images
in terms of the number of adoptions and number of DockerHub stars, along with the Pearson’s correlation between
independent and dependent variables Corr. Coeff; and the effect size magnitude (i.e., from Cohen’s d). The variables Num.
of exposed secrets and Is official are the most significant ones for the number of adoption, with a p-value < 0.001. That
means developers tend to adopt official images, i.e., images that follow the Docker official images program guidelines.
This is also true when considering the number of DockerHub stars as a dependent variable. This can be a consequence
of the fact that they have few exposed secrets with a lower number of vulnerabilities (Fig. 5). The metric Image user is
root is not statistically significant for the outcome Number of adoptions. This means that it does not influence the usage
of a Docker image. On the other hand, it is significant for the outcome Number of DockerHub stars with a negative
relation. This means that image users prefer images where the main account is not root. Fig. 5 shows the relation
20

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym °XX, June 03-05, 2018, Woodstock, NY

1041 DockerHub stars Adoptions
1042 °
. F2
1043 ;
1044 Image size £
1045 £ L1
e,
1046 Se
1047 K
°° o | She oo o0
1048 N o
1049 - 150
1050 Num. of 100
1051 layers
1052 s 50
1053 H HE) [.
1054 -0
1055 N 2000
L
M
1056 Num. of g
1057 vulnerabilities g
1058 o 1 - 1000
a ;
1059 . .
:]
1060 0 HH o0 .lo
1061
1062 R Lo

1063

Image user is root
1064

1065
¢ ¢ " ‘1
1066

1067

L] L]
1068 750
1069 Num. of . .
1070 exposed secrets | ¢ $ 500
. .
s s
1071
¢ _ ¢ - 250
1072 H H
2, ° 2
1073 Seoe & 0 o[Sve oo 0
1074
1075 ‘. N N Lo
1076 Is official
1077
1078 |_ " ok
1079
1080

1081

1082 Fig. 5. Descriptive plot of the relationship between dependent and independent variables for the regression modeling of RQ;.

1083

1084
g5 between each independent and dependent variable involved in RQy. We use boxplots for binary variables and scatter

1086 plots for continuous ones. We have an overall inverse relation between independent variables and outcomes, the higher

1087 the adoptions, the lower the external features of the Docker images. We computed the Spearman correlation between

s dependent and independent variables. The number of stars has a negative correlation with Image size and a positive
1089

0o one with the metric Is official. This means that the developers prefer smaller images having the official image label. A

1001 heatmap with the correlation values can be found in our replication package [26].
1092 21

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

Table 4. Mixed-effects models obtained for explaining developers’ preferences through external factors. The columns Corr. Coeff and
Effect Size report the value of Pearson’s r and Cohen’s d magnitude, respectively.

Variable Estimate p-value Corr. Coeff. EffectSize Rel.
a Image size -0.0476 0.0274 -0.09 very small N
& Num. of vulnerabilities -0.0047 0.6696 - -
§- Image user is root 0.0096 0.2644 - -
= Num. of exposed secrets -0.0538 0.0008 -0.07 very small N
s official 0.0904 < 0.0001 0.16 small /!

Image size -0.0937 0.0044 -0.26 medium N
@ Num. of vulnerabilities -0.0768 < 0.0001 -0.16 small N
ag Image user is root -0.0346 0.0104 0.12 small N
Num. of exposed secrets -0.1021 < 0.0001 -0.11 small N

Is official 0.6014 < 0.0001 0.66 large v

The adjusted R? for the two models are 0.18 (weak effect size) for the outcome Number of adoptions, and 0.74 (strong
effect size) for the outcome Number of DockerHub stars. This shows that the external factors we considered are sufficient
to explain the prominence of a Docker image over others expressed by developers. However, they are not enough
to explain the actual adoptions. There could be other factors, still not investigated in the literature, that might help

understand how developers choose the base images for their Dockerfiles.

Summary of RQj. Developers’ perceived (i.e., prominence expressed in terms of DockerHub stars) and actual (in terms
of adoptions) preferences can be explained by the image officiality-, security-, and size-related metrics. However, such

metrics are much more effective in explaining the perceived preferences than the actual ones.

6.2 RQ;y: Are configuration-related features correlated with externally observable features for Docker

images?

We computed the Spearman correlation computed between configuration and external features of Docker applications.
The highest correlation obtained is 0.75, between Image size with Num. of layers. When compared to Layer size, we
have a negative correlation of —0.51. This means that large images have many layers that perform few actions, while in
smaller images the number of layers is low and the number of actions performed is high. We also observe a negative
correlation (rs = —0.28) between Usage of build ARG and Num. of exposed secrets: This is reasonable since developers
might use build arguments to pass secrets (e.g., passwords or keys) instead of having them hard-coded in the Dockerfiles
themselves. A heatmap with the correlation values can be found in our replication package [26].

When combining such metrics in the three models we investigated, first, we found that the number of exposed
secrets in the Docker image (Num. of exposed secrets) is higher when the Dockerfile uses additional scripts (Usage of
additional script) and has a lower number of shell smells (Num. of shell script smells). The latter can be counter-intuitive.
This is because if there are additional scripts, external to the Dockerfile, it is likely that the shell-script code is in them
instead of inside the Dockerfile. Moreover, it is unlikely that shell-script smells can expose secrets in Docker images.
The adjusted R? for such a model is 0.40 (weak effect size). We also observed that vulnerabilities (Num. of vulnerabilities)
occur more frequently in older projects (Project age), when Dockerfiles are bigger (SLOC), they use additional scripts
(Usage of additional script), and they have more shell-script smells (Num. of shell script smells). The adjusted R? for such

22

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym °XX, June 03-05, 2018, Woodstock, NY

1145 Num. of Num. of
. Num. of Num. of Image size vulnerabilites exposed secrets
1146 Image size vulnerabilities exposed secrets
0 . .
1147 0 15 . ‘e ¢ - -0
3| ° ° B4
1148 6 £ o W
- & : 10 22
1149 Eg|™ . .2 8%
gx v . =)
S |wn > . L5 " oeen e ‘e . + o1
1150 3w o o
- o ven w ce .
1151 des _es" s Lo
5 5 A ol . D)
1152 © 1KY £ . e
i . . -6 =1 . 5 L0.4
1153 £ 58
B e) 3|8 5% . D &
1154 B [» oo cos o . L4 Saler . 3, o oo
Eg o wo @ - Sl § s, 1 Lo.2
1155 z% comeemoses o o |lemer oo seus - Lo E [;g,:».,,%..'-"q,]
| . g
1156 G | aerene e @0 o o ccornren © @ oflere em S ?L semeses so i::.'-0_0
s e smees see . Lo i
1157 . . .
1158 . . . +200 - LIRS [XIX2X] offpe 0
7]
&} N o
1159 3 H %g
1160 o S 100 SO
. + - + - o1
1161 g .
1162 L -0 = = e
@ . 100 @, % -
e -
1163 S ¢ 75 ol 2o, . o2
] . L Q| e . s
1164 Bé H N aﬁ; :e;g’ie;. «
7] . Ei s o . . o o o
1165 §<c N 50 o %pm...... oo of & A L,
> H O [s8 et & o8 .
zZg . a | .o g
1166] o[25 S, 2o °
S £. - s .
1167 H Lo % L -0
= = = 0 0 0
1168 . . . L4 " L1
1169 o w5 00
N 31
1170 g ° . . r3 g'g ° . « °® °.
z|% 3ol : 25 Y «|-50
1171 T8 Banls, H Lo 8|)
%. o %f S e . g - : i
172 Brpstne, Too | BEITS 00 ¥ L Hhvwdones wew o3 °E Lo
1173 NE . e . -1.00 N N N
g 100
] . L
1174 Ele Ky * . H ICECIN R R
1175 @ . .)
5 S e . F050 E > sooln . s
1176 5 K XX : z- & . r
2 o e fleT T e . -0.25
1177 B | os gﬂ] % o |3 £ - .
78 - i |l i bl -0.00
11 :
179 “_‘% LU TN —Imom . - -0 - ‘I ¢ o
1180 °a S
¥ - 5=
1181 8s M gu
o3 =]
1182 k . } -Io .o . 1 " oane 000 ‘ }o - W1
1183 a
1184 [
o
= LI} -INN X -0 + + il + + - 0
1185 53 59
o @ o<
1186 22 gz
» © 05
1187 = Sa
,;_l: . " 0 - offpe - F1 LI R LY * r1
1188 o
1189
1190 (a) (b)
1191

1192 Fig. 6. Descriptive plot of the relation between dependent and independent variables for the regression modeling conducted in RQa.
1193

1194

1195

1196 23

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

a model is 0.24 (weak effect size). Finally, our results show that the image size highly depends on the number of layers
(Num. of layers), as previously observed with the simple correlations. Similarly, the size is higher when the Dockerfile
uses additional scripts (Usage of additional script) and fewer lines of code (SLOC). It is important to keep in mind that
the size of a Docker image mainly depends on the number of layers and the base image used. For example, a Dockerfile
that uses as base image the nginx web server, probably mainly performs the copy and the setup of the application to be
contained. The adjusted R? is 0.76 (strong effect size). The detailed results of the models we built for RQ; are available
in our replication package [26].

In summary, we observed that some configuration-related features have a significant role in explaining the external
features we analyzed. In general, developers should keep the SLOC low to have benefits in terms of size and security.
It is important to say that not all the lines of code (i.e., instructions) have a direct impact on the image size (e.g., the
removal of non-functional instructions like EXPOSE). Similarly, developers should pay attention to the Num. of layers,
which can negatively impact the size. Finally, the use of additional shell scripts should be discouraged since it has a
negative impact on both the security (Num. of exposed secrets and Num. of vulnerabilities) and size (Image size). Also in

this case there are exceptions, i.e., not all the shell script smells directly lead to security issues.

Summary of RQg. Some configuration-related features have a significant role in explaining the security and the size of

Docker images. Developers should keep SLOC and Num. of layers low and they should avoid using external shell scripts.

6.3 Discussion

From the results of our study, we can extract several hints that benefit both researchers and developers interested in
improving the quality of their Docker images. The general picture is described in Fig. 4, which summarizes the outcome
of the regression modeling for both RQs. We observed that Docker images having the highest number of adoptions
have a small storage size and a low number of layers. Also, the number of exposed secrets is low, along with a low
number of shell script smells, also avoiding the usage of additional scripts. The number of SLOC has to be low, along
with the heterogeneity of instructions (i.e., entropy).

The officiality of the image is actually the strongest factor explaining the preference for Docker images, impacting
both adoptions and stargazers count. For the latter, in addition to the features mentioned above, we have that image
users prefer images with less number of vulnerabilities, where the main user of the image is not root. It is interesting to
note that the number of vulnerabilities is positively affected by the repository age of the Dockerfile. This means, and
confirms, that Dockerfiles must be actively maintained and updated to lower the presence of security vulnerabilities in
the resulting images [30].

Also, the correlations found in our experiment are not strong for the specific metrics and features. Most likely, this
happens because developers tend to pick official Docker images, with the assumption that they have the best quality
overall !°. We believe that this results from the fact that they are not aware of alternatives from the community of
that images because it is difficult for users to compare similar Docker images as their peculiarities are not clearly
highlighted [15]. An example is the debezium/postgres:11 Docker image, where the source Dockerfile has fewer
smells (i.e., 6) compared to the official postgres: 11 (i.e., 13). Another example is the bitnami/nginx:1.19, an unofficial
Docker image for nginx v1.12, which has fewer security vulnerabilities (i.e., 98) compared to the official image nginx:1.19

(i.e., 188). The behavior of the developers, when they pick a Docker image, could be related to the mismatch between

https://github.com/docker-library/official-images#what-are-official-images
24

https://github.com/docker-library/official-images#what-are-official-images

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym °XX, June 03-05, 2018, Woodstock, NY

1249
1250 Fig. 7. Examples of Dockerfiles having different image sizes.

1231 FROM openjdk:7-slim
1252
INSTALL REQUIREMENTS

1
1253 3
+ RUN apt-get update
6
8

1254 RUN apt-get install --no-install-recommends -y wget
RUN apt-get clean
RUN rm -rf /var/lib/apt/lists/x*

1255

1256

1257 o # INSTALL TOMCAT

1258 10 RUN wget http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.69/bin/
11 < apache-tomcat-7.0.69.tar.gz -0 tomcat.tar.gz

12 RUN tar zxf tomcat.tar.gz

1260 135 RUN rm tomcat.tar.gz

1261 1« RUN mv apache-tomcatx tomcat

1259

1262 s # ADD TOMCAT EXECUTABLE TO PATH

1263 17 ENV PATH "$PATH:/tomcat/bin"
1264 18

1v EXPOSE 8080
1265

1266 21 CMD ["catalina.sh", "run"]
1267
1268 @
1269
1 FROM openjdk:7-slim
1270)
1271 3 # INSTALL REQUIREMENTS
1272 + RUN apt-get update && \
5 apt-get install --no-install-recommends -y wget && \
1273 6 apt-get clean && \
1274 7 rm -rf /var/lib/apt/lists/*
8
1275 o # INSTALL TOMCAT
1276 10 RUN wget http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.69/bin/
1277 1 < apache-tomcat-7.0.69.tar.gz -0 tomcat.tar.gz && \
12 tar zxf tomcat.tar.gz && \
1278 13 rm tomcat.tar.gz && \
1279 14 mv apache-tomcatx tomcat
15
1250 1 # ADD TOMCAT EXECUTABLE TO PATH
1281 17 ENV PATH "$PATH:/tomcat/bin"
1282 18
v EXPOSE 8080
1283 "
1284 21 CMD ["catalina.sh", "run"]
1285
1286 (b)
1287
1 FROM openjdk:7-slim
1288 3
1289 3 # INSTALL TOMCAT
1290 + RUN apt-get update && \
) 5 apt-get install --no-install-recommends -y wget tomcat7 && \
1291 6 apt-get clean && \
1292 7 rm -rf /var/lib/apt/lists/*
907 8
1293 o # ADD TOMCAT EXECUTABLE TO PATH
1294 1o ENV PATH "$PATH:/usr/share/tomcat7/bin"
1295 1
12 EXPOSE 8080
1296 N
1297 12 CMD ["catalina.sh", "run"]
1298
1299 ©

1300 25

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

adoptions and image preferences (i.e., prominence), where we have a Pearson correlation r = 0.25 and medium effect
size. We believe that, for the same reason, official Docker images tend to have more stars, i.e., higher prominence
(r = 0.66 and large effect size).

We can summarize some takeouts from the results of our empirical study.

Image size is influenced by Num. of layers. Considering the results of our analysis, the number of LOC influences
the number of layers. In Fig. 7 we report three different examples to qualitatively assess this relation. We have the
Dockerfile a and a version with the number of layers reduced (i.e., Dockerfile b) maintaining the same number of lines.
Thus, if we build Dockerfile g, the resulting image will have 21 layers with a size of ~315 MB. If we build Dockerfile b,
the resulting image will have 15 layers with a size of ~282 MB.

In some cases, if a Dockerfile downloads an external package, the size of the resulting image will change independently
of the number of layers and lines of code. For example, if we consider Dockerfile b with the two RUN instructions merged,
compared to Dockerfile ¢ where tomcat is installed using via apt-get, the resulting images will have the same number of
layers, but the size of the former is higher than the latter (282 MB vs. 277 MB). Moreover, looking at Dockerfile a and
b, it is clear that the number of layers is not related to the number of LOC but to the number of Docker instructions
However, we show an example where we modify instructions that directly impact the composition of the final image.
The same does not apply to some kind of instructions, i.e., removing instructions such as LABEL or EXPOSE. To the best
of our knowledge, there are no automated tools for the refactoring of Dockerfiles that can help to reduce the image size.

However, there is the docker-slim tool?°

that does not act on the Dockerfile, but directly on the container. It creates a
slimmed-down version of the Docker container maintaining the same functionalities.

Shell scripts can be a proxy for security issues. An interesting point to discuss, resulting from our empirical
study, is the fact that the usage of shell scripts can lead to security issues. There are mainly two types of shell scripts
used in Dockerfiles: Embedded shell scripts and external shell scripts. For the former, the major issues are related to
the best practice violations detected with the hadolint. For the latter, the main issue is that the shell script is executed
in the same build context as the Docker image. In this way, it is possible to inject malicious code or access the host
file system. In general, shell script code must be written in a safe way, following best practices, and additional scripts
must be checked, or else they must come from trusted sources. It will be better to avoid copy-paste shell scripts from
random websites. An example of a best practice violation that can expose the Docker container to security issues is
the rule violation identified as SC1098, detected by the tool hadolint. The violation concerns the missing quote/escape
for special characters when using the eval command. This rule is not a security issue itself, but its violation can lead
to unpredictable outcomes from the script code. This can be exploited to inject malicious code?! Moreover, the main
proxy for security vulnerabilities is related to the update status of the Docker images, i.e., most updated images usually
have fewer security vulnerabilities, but are not exempt from them [30, 39].

Dockerfile smells do not explain the adoption of the final Docker image. In the current scientific literature,
the main measure to evaluate the quality of Docker images [5, 34] is the number of best practice violations (i.e., smells)
detected by the hadolint tool. Our results show that Dockerfile smells are not relevant for explaining any of the external
factors we considered. In other words, their impact on the developers’ preferences, when they have to choose whether
they should adopt a Docker image, is negligible. It is possible that the current catalog of smells is still not sufficiently
complete, or else only some of them are relevant for explaining the adoption of Docker images. Future work should be
aimed at finding new types of smells, more related to the impact that they have on the resulting Docker image.

Dhttps://github.com/docker-slim/docker-slim
Hhittps://developer.apple.com/library/archive/documentation/OpenSource/Conceptual/ShellScripting/ShellScriptSecurity/ShellScriptSecurity.html

26

~
~
https://github.com/docker-slim/docker-slim
https://developer.apple.com/library/archive/documentation/OpenSource/Conceptual/ShellScripting/ShellScriptSecurity/ShellScriptSecurity.html

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

What Quality Aspects Influence the Adoption of Docker Images? Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

7 THREATS TO VALIDITY

In this section, we report the threats to the validity of our study.

Construct Validity. We use state-of-the-practice tools such as Clair and Hadolint, to compute some of the metrics
related to both external and configuration features (e.g., Num. of vulnerabilities and Num. of docker smells). To the best of
our knowledge, the effectiveness of such tools for detecting the aspect that they aim at capturing was not validated in
any previous study. However, such tools are already adopted both by developers in practice and researchers [5, 30, 34].

Internal Validity. To build our datasets we relied on the tool GHSearch, which provides all the software repositories
from GitHub having more than 10 stars. While this could have biased the results towards more popular projects, we
used this procedure to minimize the number of toy projects (e.g., students’ tests with Docker) in our datasets. While
assigning the application name and version to each Docker image, we excluded the ones that contained more than an
application name. We did this to avoid Docker images providing unique features that no other images could provide (i.e.,
not comparable in terms of the environment alone). In doing so, we discarded 205 Docker images, which is negligible.
An example of a discarded image is tiangolo/uwsgi-nginx-flask:python3. 522 It is worth saying that we only
selected Docker images containing applications, so we discarded images for programming languages and OSs. Thus, we
excluded a total of 128,704. Moreover, tagging some of the common programming languages and operating systems
following the same procedure of Section 5.1, among the excluded images, we have 56,792 and 42,296, respectively. The
remaining are uncategorized. In the first study, we ran a literature review to extract a collection of quality metrics
that can impact the perceived quality of Docker images. We did not perform a Systematic Literature Review (SLR) on
Docker quality to build the taxonomy because the topic is too broad and it would have been outside the scope of this
paper. This is why we have not followed all the guidelines typically used to run a SLR [17]. As a result, we could have
unintentionally excluded from our study some metrics defined in the literature relevant four our study. However, we
still tried to minimize this by using some of the guidelines defined by Kitchenham and Brereton [17]: First, we use
precise inclusion and exclusion criteria (Table 1) to make sure we do not select irrelevant papers. Second, to enlarge the
initial set of papers we selected, we both used snowballing (to include older relevant literature) and searched for papers
that cite them (to include more recent literature).

External validity. Because of the procedure we used to build Djpg, we started from Dockerfiles of downstream
applications to define a list of Docker images to analyze. It is possible that, because of this process, we ignored some
Docker images that are not used in open-source software but are used in proprietary software, such as Oracle db*>.
While it is clear that we could not have captured the number of adoptions for them without having access to a large
amount of proprietary Dockerfiles, it is true that we could have done so for the number of stars, which is always
publicly available. We decided not to have two different datasets for the two dependent variables used to answer RQq to
avoid obtaining incomparable results. For Dg, we manually looked for the Dockerfiles of a sample of Docker images
provided for the top ten applications in terms of the absolute number of Docker images available. The results of RQ2
might not generalize to all the applications we consider. Still, this procedure allowed us to cover about ~50% of the
total number of Docker image usages. It is important to clarify that our study was conducted on open-source Docker
images and Dockerfiles, and, thus, our findings should not be generalized to other contexts (e.g., industrial projects).
In addition, the results come from a correlational study, where we cannot infer causality based on the data alone. In

general, we reported practical examples to support our findings.

Zhttps://hub.docker.com/r/tiangolo/uwsgi-nginx-flask
Zhttps://hub.docker.com/_/oracle-database-enterprise-edition

27

~

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

1456

Conference acronym "XX, June 03-05, 2018, Woodstock, NY Rosa et al.

8 CONCLUSION AND FUTURE WORK

Containerization is widely adopted in practice, and Docker is the leading technology. There are plenty of Docker images
available in public repositories such as DockerHub, some of which provide the same software systems. It is unclear
what aspects influence developers’ preferences. In this paper, we first performed a literature review of 31 papers to
find what are the externally observable features and configuration-related features factors typically considered. As a
result, we defined a taxonomy of such features, along with the metrics typically used to measure them. Next, using such
metrics, we performed an empirical study on a dataset of 2,441 Docker images to evaluate (i) what externally observable
features impact the adoption of Docker images, and (ii) to what extent the configuration features influence external
features. Our results show that the developers prefer Docker images that are official, secure, and small in storage size.
Moreover, in terms of configuration features that are a significant impact on them, the Num. of layers must be kept low
and Usage of additional script must be avoided if possible, where also the number of Num. of shell script smells must be
low. Based on these results, future research could be aimed at defining a quantitative score for measuring the quality
level of Docker images and Dockerfiles. Such a score could allow (i) developers to choose among different alternative

Docker images, and (ii) researchers to build automated tools that take quality into account by objectively measuring it.

9 ACKNOWLEDGEMENTS

The authors would like to thank Marco Russodivito and Stefano Fagnano for their precious contributions to the data

extraction process.

REFERENCES

[1] 2015. hadolint: Dockerfile linter, validate inline bash, written in Haskell. https://github.com/hadolint/hadolint. [Online; accessed 2-Jun-2022].
[2

Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is more: quantifying the security benefits of debloating web applications. In
28th USENIX Security Symposium (USENIX Security 19). 1697-1714.
[3] Hideaki Azuma, Shinsuke Matsumoto, Yasutaka Kamei, and Shinji Kusumoto. 2022. An empirical study on self-admitted technical debt in Dockerfiles.
Empirical Software Engineering 27, 2 (2022), 1-26.
[4] Antonio Brogi, Davide Neri, and Jacopo Soldani. 2017. DockerFinder: multi-attribute search of Docker images. In 2017 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 273-278.
[5] Jurgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi, and Harald C Gall. 2017. An empirical analysis of the docker
container ecosystem on github. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, 323-333.
[6] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling projects in github for MSR studies. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 560-564.
[7] Paul D Ellis. 2010. The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge university
press.
[8] Kalvin Eng and Abram Hindle. 2021. Revisiting Dockerfiles in Open Source Software Over Time. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, 449-459.
[9] Andrew Gelman and Jennifer Hill. 2006. Data analysis using regression and multilevel/hierarchical models. Cambridge university press.
[10] Sara Gholami, Hamzeh Khazaei, and Cor-Paul Bezemer. 2021. Should you upgrade official docker hub images in production environments?. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 101-105.
[11] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. 2020. A dataset of dockerfiles. In Proceedings of the 17th International Conference
on Mining Software Repositories. 528-532.
[12] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. 2020. Learning from, understanding, and supporting devops artifacts for
docker. In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 38-49.
[13] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’Amorim, and Thomas Reps. 2021. Shipwright: A Human-in-the-Loop System for
Dockerfile Repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 1148-1160.
[14] Zhuo Huang, Song Wu, Song Jiang, and Hai Jin. 2019. Fastbuild: Accelerating docker image building for efficient development and deployment of
container. In 2019 35th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 28-37.
[15] Md Hasan Ibrahim, Mohammed Sayagh, and Ahmed E Hassan. 2020. Too many images on DockerHub! How different are images for the same
system? Empirical Software Engineering 25, 5 (2020), 4250-4281.

28

https://github.com/hadolint/hadolint

1457

1458

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

What Quality Aspects Influence the Adoption of Docker Images?

[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Shinya Kitajima and Atsuji Sekiguchi. 2020. Latest Image Recommendation Method for Automatic Base Image Update in Dockerfile. In International
Conference on Service-Oriented Computing. Springer, 547-562.

Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of systematic review process research in software engineering. Information and
software technology 55, 12 (2013), 2049-2075.

Emna Ksontini, Marouane Kessentini, Thiago do N Ferreira, and Foyzul Hassan. 2021. Refactorings and Technical Debt in Docker Projects: An
Empirical Study. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 781-791.

Emna Ksontini, Marouane Kessentini, Thiago do N Ferreira, and Foyzul Hassan. 2021. Refactorings and Technical Debt in Docker Projects: An
Empirical Study. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 781-791.

Changyuan Lin, Sarah Nadi, and Hamzeh Khazaei. 2020. A large-scale data set and an empirical study of docker images hosted on docker hub. In
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 371-381.

Peiyu Liu, Shouling Ji, Lirong Fu, Kangjie Lu, Xuhong Zhang, Wei-Han Lee, Tao Lu, Wenzhi Chen, and Raheem Beyah. 2020. Understanding the
security risks of docker hub. In European Symposium on Research in Computer Security. Springer, 257-276.

Francesco Lomio, Emanuele Iannone, Andrea De Lucia, Fabio Palomba, and Valentina Lenarduzzi. 2022. Just-in-time software vulnerability detection:
Are we there yet? Journal of Systems and Software (2022), 111283.

Zhigang Lu, Jiwei Xu, Yuewen Wu, Tao Wang, and Tao Huang. 2019. An empirical case study on the temporary file smell in dockerfiles. IEEE Access
7 (2019), 63650-63659.

Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. 2018. Docker ecosystem-vulnerability analysis. Computer Communications
122 (2018), 30-43.

Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick McDaniel. 2017. Cimplifier: automatically debloating containers. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 476—486.

Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto. 2023. Replication package. https://doi.org/10.6084/m9.figshare.20131727.
John Ruscio. 2008. A probability-based measure of effect size: robustness to base rates and other factors. Psychological methods 13, 1 (2008), 19.
Gerald Schermann, Sali Zumberi, and Jiirgen Cito. 2018. Structured information on state and evolution of dockerfiles on github. In Proceedings of the
15th International Conference on Mining Software Repositories. 26—-29.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason Osborne. 2011. Evaluating Complexity, Code Churn, and Developer Activity Metrics as
Indicators of Software Vulnerabilities. IEEE Trans. Software Eng. 37 (11 2011), 772-787. https://doi.org/10.1109/TSE.2010.81

Rui Shu, Xiaohui Gu, and William Enck. 2017. A study of security vulnerabilities on docker hub. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. 269-280.

Dimitris Skourtis, Lukas Rupprecht, Vasily Tarasov, and Nimrod Megiddo. 2019. Carving perfect layers out of docker images. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19).

Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

Byungchul Tak, Hyekyung Kim, Sahil Suneja, Canturk Isci, and Prabhakar Kudva. 2018. Security analysis of container images using cloud analytics
framework. In International Conference on Web Services. Springer, 116-133.

Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. 2020. Characterizing the occurrence of dockerfile smells in open-source software: An
empirical study. IEEE Access 8 (2020), 34127-34139.

Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. 2020. An empirical study of build failures in the docker context. In Proceedings of the 17th
International Conference on Mining Software Repositories. 76-80.

Jiwei Xu, Yuewen Wu, Zhigang Lu, and Tao Wang. 2019. Dockerfile tf smell detection based on dynamic and static analysis methods. In 2019 IEEE
43rd Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, 185-190.

Ahmed Zerouali, Valerio Cosentino, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona. 2019. On the impact of outdated and vulnerable
javascript packages in docker images. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
619-623.

Ahmed Zerouali, Tom Mens, and Coen De Roover. 2021. On the usage of JavaScript, Python and Ruby packages in Docker Hub images. Science of
Computer Programming 207 (2021), 102653.

Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona. 2019. On the relation between outdated docker containers, severity
vulnerabilities, and bugs. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 491-501.
Yang Zhang, Huaimin Wang, and Vladimir Filkov. 2019. A clustering-based approach for mining dockerfile evolutionary trajectories. Science China
Information Sciences 62, 1 (2019), 1-3.

Yang Zhang, Gang Yin, Tao Wang, Yue Yu, and Huaimin Wang. 2018. An insight into the impact of dockerfile evolutionary trajectories on quality
and latency. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, 138-143.

Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Arnab K Paul, Keren Chen, and Ali R Butt. 2020.
Large-scale analysis of docker images and performance implications for container storage systems. IEEE Transactions on Parallel and Distributed
Systems 32, 4 (2020), 918-930.

Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt.
2019. Large-scale analysis of the docker hub dataset. In 2019 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 1-10.

29

https://doi.org/10.6084/m9.figshare.20131727
https://doi.org/10.1109/TSE.2010.81

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Docker Basics
	2.2 Support tools for Docker Images and Dockerfiles
	2.3 Studies on the quality of Docker Artifacts

	3 Discovering External and Configuration Features of Docker Artifacts
	3.1 Methodology
	3.2 Taxonomy of Quality Features and Metrics

	4 Explaining Developers' Preferences
	5 Empirical Study Design
	5.1 Data Collection
	5.2 Experimental Procedure
	5.3 Replication Package

	6 Empirical Study Results
	6.1 RQ1: Can the externally observable features explain the developers' preference for a Docker image?
	6.2 RQ2: Are configuration-related features correlated with externally observable features for Docker images?
	6.3 Discussion

	7 Threats to validity
	8 Conclusion and Future Work
	9 Acknowledgements
	References

