
Sorry, I don’t Understand:
Improving Voice User Interface Testing

Emanuela Guglielmi
STAKE Lab

University of Molise
Italy

emanuela.guglielmi@unimol.it

Giovanni Rosa
STAKE Lab

University of Molise
Italy

giovanni.rosa@unimol.it

Simone Scalabrino
STAKE Lab

University of Molise
Italy

simone.scalabrino@unimol.it

Gabriele Bavota
SEART @ Software Institute

Università della Svizzera italiana
Switzerland

gabriele.bavota@usi.ch

Rocco Oliveto
STAKE Lab

University of Molise
Italy

rocco.oliveto@unimol.it

ABSTRACT
Voice-based virtual assistants are becoming increasingly popular.
Such systems provide frameworks to developers on which they
can build their own apps. End-users can interact with such apps
through a Voice User Interface (VUI), which allows to use natu-
ral language commands to perform actions. Testing such apps is
far from trivial: The same command can be expressed in differ-
ent ways. To support developers in testing VUIs, Deep Learning
(DL)-based tools have been integrated in the development envi-
ronments (e.g., the Alexa Developer Console, or ADC) to generate
paraphrases for the commands (seed utterances) specified by the
developers. Such tools, however, generate few paraphrases that do
not always cover corner cases. In this paper, we introduce VUI-
UPSET, a novel approach that aims at adapting chatbot-testing
approaches to VUI-testing. Both systems, indeed, provide a similar
natural-language-based interface to users. We conducted an em-
pirical study to understand how VUI-UPSET compares to existing
approaches in terms of (i) correctness of the generated paraphrases,
and (ii) capability of revealing bugs. Multiple authors analyzed 5,872
generated paraphrases, with a total of 13,310 manual evaluations
required for such a process. Our results show that, while the DL-
based tool integrated in the ADC generates a higher percentage
of meaningful paraphrases compared to VUI-UPSET, VUI-UPSET
generates more bug-revealing paraphrases. This allows developers
to test more thoroughly their apps at the cost of discarding a higher
number of irrelevant paraphrases.

CCS CONCEPTS
• Software and its engineering→ Software evolution;Main-
taining software; Software defect analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556934

KEYWORDS
voice user interfaces, software testing, NLP

ACM Reference Format:
Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota,
and Rocco Oliveto. 2022. Sorry, I don’t Understand: Improving Voice User
Interface Testing. In 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556934

1 INTRODUCTION
Voice is a powerful tool in human-computer interaction, as it repre-
sents a fundamental means of human communication [24]. Voice-
based virtual assistants such as Google Assistant, Alexa, and Siri
quickly spread among users thanks to their pervasive integration
with external services (e.g., home automation devices) and their
ease of use: It is estimated that 8.4 billion voice-based virtual assis-
tants will be in use by 2024 [23]. Voice-based virtual assistants allow
users to perform a wide range of basic actions, such as checking the
weather or setting timers. On top of that, they provide developers
with frameworks through which the supported range of actions
can be extended by developing specific applications. An example of
such apps is the Twitter Reader Alexa skill [40]: Such an app allows
users to access a basic set of Twitter features, such as reading the
trending topics or writing a tweet. Instead of using a typical Graphic
User Interface (GUI), users interact with these apps through a Voice
User Interface (VUI) [14], using natural language commands and
queries to perform actions or to acquire information. To support
such interactions, apps’ developers must define a Voice Interaction
Model (VIM) [7], which maps states and example utterances that
users might pronounce to actions that must be triggered.

The Artificial Intelligence model behind voice-based virtual as-
sistants makes them quite tolerant with respect to small variations
between the pronounced and the expected utterance. For example,
if the expected utterance is “what are the news?” and the actual
utterance is “read me the news”, the desired action will be likely
triggered. However, if the actual utterance is far from the expected
one (e.g., “what happened today?”), the app might not behave prop-
erly. The fact that users can use different utterances to express the
same command/query, makes the testing of VUIs far from trivial.

https://doi.org/10.1145/3551349.3556934
https://doi.org/10.1145/3551349.3556934

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

Previous research introduced approaches for automatically test-
ing GUIs [29, 32, 35]. However, research in VUI-testing is still at
its early stages, and only a few solutions exist. One of the state-of-
the-practice solutions is provided in the Alexa Developer Console
(ADC), the environment used to implement and publish Alexa skills.
ADC integrates a Deep Learning (DL)-based tool that allows devel-
opers to generate, given a seed utterance 𝑠 , a set of paraphrases 𝑃𝑠 .
The VIM associates each seed sentence 𝑠 to the intent it triggers
(𝐼𝑠). Since paraphrases should trigger the same intent of the seed
sentence, a generated test case is a pair ⟨𝑝𝑠 , 𝐼𝑠 ⟩, with 𝑝𝑠 ∈ 𝑃𝑠 . This
approach generates few paraphrases and, therefore, it is unlikely
to cover several corner cases. Testing VUI-based apps poses the
same conceptual problems as testing chatbots. Chatbots provide an
interface in which they write commands, thus using the same type
of interaction of VUI-based apps (i.e., based on natural language)
but through different means (text-based vs voice-based). Previous
research introduced a rigorous approach for automatically gener-
ating paraphrases for testing chatbots [19], which consists in (i)
replacing words and phrases with synonyms, thus generating a set
of candidates, and (ii) filtering candidates based on their similarity
with the input utterance through a combination of metrics. It is un-
clear, however, to what extent this approach works with VUI-based
apps, given the different means of communication used, which
likely results in using expressions of different type and length.

In this paper, we introduce VUI-UPSET (Voice User Interfaces
Utterance ParaphraSe gEneraTor), an approach that adapts chatbot-
testing techniques to VUI-testing. Similarly to the approach by
Guichard et al. [19], i.e., the chatbot-testing technique we took in-
spiration from (GRSBV, from now on), VUI-UPSET (i) generates a
large set of candidate paraphrases and (ii) filters the most promising
ones. As for the first step, while GRSBV replaces a word/phrase at
a time with a synonym, leaving the others unchanged, VUI-UPSET
replaces also more than one, thus generating a much larger set of
candidate paraphrases. The main point of novelty lies, however,
in the second step: VUI-UPSET uses a DL model for checking the
equivalence between the seed sentence and each generated para-
phrase, while GRSBV relies on several manually crafted metrics.
We run an empirical study with 20 open-source Alexa skills to
understand how VUI-UPSET compares to two baselines: GRSBV
[19] and the state-of-the-practice tool integrated in the ADC (ADC
tool). We checked to what extent the generated paraphrases are
(i) correct (i.e., semantically equivalent to the seed sentence) and
(ii) able to reveal bugs in the VUIs. To this aim, we manually ana-
lyzed 5,872 generated paraphrases, totaling 13,310 evaluations. Our
results show that the ADC tool is the most accurate one: The para-
phrases it generates are correct in ∼74% of the cases, as compared
to VUI-UPSET (∼40%) and GRSBV (∼21%). VUI-UPSET, however,
generate a higher absolute number of correct paraphrases for most
of the skills. On the other hand, the percentage of bug-revealing
paraphrases generated by the three approaches is not significantly
different. Therefore, since VUI-UPSET generates a higher number of
correct paraphrases, it also generates a significantly higher number
of bug-revealing paraphrases. VUI-UPSET allows developers to test
more thoroughly their apps at the cost of discarding a higher num-
ber of irrelevant paraphrases. Finally, VUI-UPSET and the ADC tool
are highly complementary. Therefore, the two techniques might be
combined to generate more bug-revealing paraphrases.

2 BACKGROUND AND RELATEDWORK
In this section we present an overview of the basic concepts behind
VUIs and VUI-testing. Then, since we instantiate the approaches
on the framework provided by Amazon Alexa, we explain how a
VUI-based app for Alexa (Alexa skill) works. Finally, we describe in
details the two baseline techniques we will use in our study: the
tool integrated in the Amazon Developer Console (ADC tool) and
the chatbot-testing approach defined by Guichard et al. [19].

2.1 Voice User Interfaces
AVUI is a type of human-computer interface in which users provide
commands or queries in the form of spoken utterances and they
receive (mostly) spoken responses from the system. While VUIs
have been introduced a long time ago, they are now spreading
thanks to the more advanced technologies available for natural
language processing (NLP) and voice recognition. Indeed, a VUI is
generally composed by two components: a speech recognition part,
which translates voice into text, and an NLP component, which
has the role of matching the natural language sentence to a set of
predefined commands and trigger the desired action. Like any other
software, VUI-based apps might be arbitrarily complex and they
generally support multiple states.

Previous work on chatbot testing have addressed this problem
with similar strategies. However, the field of testing VUIs (and
chatbots) is still in its infancy, and only a few recent approaches
exist in the literature. Cabot et al. [12] conducted a study aimed at
identifying the relevant testing properties and techniques and their
adaptation for NLP-based bots. Bird et al. [9] tackled the problem
of training DL models for tasks related to chatbot interaction. To
this aim, they introduced the “Chatbot Interaction with Artificial
Intelligence” (CI-AI) framework, which augments user-generated
data with paraphrases, similar to what we do in VUI-UPSET. Bozic
et al. [11] proposed an approach based on metamorphic testing that
automatically verifies the functionality of a chatbot.

According to the literature, the development of a good chatbot re-
quires a continuous process that relies on various high-quality data.
Therefore, previous work [34] introduced approache for generating
paraphrases through the use of different techniques. Automatically
generating a test case in this context means creating natural lan-
guage sentences to give as input to the VUI (test data) and checking
if the response behavior (which usually includes the target state of
the app) is correct (test oracle).

Generally, the response behavior consists in (i) changing the
state of the app and, optionally, (ii) providing a spoken response. A
natural way of generating test cases in this context is by using an
approach inspired by metamorphic testing [36]: Given an utterance
𝑢 for which the response behavior 𝑏𝑢 is expected, it is possible to
change the utterance to an equivalent one (i.e., a paraphrase), 𝑢′,
and assert that the executed behavior is still 𝑏𝑢 .

Traditional approaches to utterance paraphrasing, such as hiring
experts or crowdsourcing, are costly, time consuming, and with
their own trade-offs in terms of quality [21, 41]. Automatic para-
phrasing is emerging as an attractive alternative that promises a
fast, scalable and cost-effective testing process.

Improving Voice User Interface Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

2.2 Alexa Skills and Developer Console
Alexa [2] is Amazon’s cloud-based voice assistant and is the “intelli-
gence” that powers Amazon Echo and other devices. Apps that run
on Alexa are called skills, and developers use an integrated envi-
ronment for developing, testing and distributing them, namely the
Amazon Developer Console (ADC) [4]. A skill is divided into two
components: the voice interaction model and the programming logic.
The former is a description of the utterances that users might use
to activate different functionalities of the latter. More specifically,
the voice interaction model associates seed utterances to specific
intents which, in turn, trigger a specific part of the programming
logic (handlers) to provide a response to the user. Alexa is tolerant
to small variations between the utterance pronounced by the user
and the expected seed utterance: For example, if the seed utterance
is “register birthday” it is most likely that Alexa will still trigger the
same intent for the pronounced utterance “register my birthday”.
This is not necessarily true when the semantic equivalence of the
utterances is less trivial (e.g., when the user pronounces “take note
of my birthday”). Therefore, the larger the set of seed utterances pro-
vided by the developer, the higher the chance that Alexa recognizes
the users’ intent and triggers the desired action, thus improving the
perceived quality of the app. Seed utterances might contain slots, i.e.,
placeholders that allow users to give inputs [3]. For example, slots
can be used to recognize the date of birth of the user pronounced
in the sentence “I was born on January 1st, 2000”. The ADC can be
used to test a given skill by providing a set of utterances associated
with the expected intent that will be triggered (annotation sets).
This feature is available in the NLU-evaluation tool of the ADC
[6]. Such a tool associates to each utterance in the annotation set a
binary value (PASSED or FAILED) based on the fact that the actual
intent equals or not the expected one.

There are some tools that facilitate the generation of annotation
sets to test the skills. KayLearch [22] relies on using a grammar
to generate variants of the given utterances. However, such a tool
requires developers to manually define the grammar. ADC provides
a feature that allows developers to automatically generate para-
phrases for seed utterances to either test their skill or to enlarge
the set of supported seed utterances. The ADC tool for generating
paraphrases allows developers to choose among three alternatives:
(i) Interaction model, which simply creates the tests containing the
sample utterances from the voice interaction model; Frequent Ut-
terances, which creates tests based on the utterances frequently
used in the simulation step by the users, and (iii) Utterances Recom-
mendation Engine, which automatically generates paraphrases by
varying the seed utterances in the voice interaction model. Since
the first two alternatives are semi-automatic, in our study we focus
on the fully-automated alternative, i.e., the Utterances Recommen-
dation Engine. From now on, when we refer to the ADC tool we
are specifically referring to the Utterance Recommendation Engine.
While it is not entirely clear how such a feature works, the official
documentation mentions that it is based on machine-learning [5].
There are several papers presented by researchers in the Amazon
Alexa team [33, 37, 38] that describe possible solutions that might
have been adopted in the recommendation engine. If this is the
case, the approach behind the Utterances Recommendation Engine
is based on encoder-decoder deep recurrent neural networks.

2.3 Generating Paraphrases for Testing
Chatbots

While VUIs have their own peculiarities, they are conceptually
similar to the textual interface used in chatbots [10]. A chatbot is a
software system designed to answer human questions in text format,
according to the specifications for which it was designed. Over time,
chatbots have embedded increasingly sophisticated algorithms to
create more natural and complex dialogues. Therefore, we describe
below in details the only approach involving both (i) a paraphrase
generation and (ii) a filtering phase (to the best of our knowledge)
defined in the literature to generate paraphrases for testing chatbots,
since we use it a starting point for our approach and as a baseline
in our comparison [19].

Guichard et al. [19] introduce a rule-based approach (as opposed
to the data-driven paradigm) that generates paraphrases aimed at
evaluating the robustness of chatbots. For simplicity, from now on
we call such an approach GRSBV (from the initials of the authors’
surnames). GRSBV involves, as a first step, the selection of the origi-
nal utterances present within the intent of the conversational agent.
The authors assume that all input utterances are grammatically and
syntactically correct with no spelling mistakes. The workflow of
GRSBV support the generation of candidate paraphrases through
lexical substitution, and the filtering of non-equivalent paraphrases
through a set of metrics. We describe such steps in details below.

2.3.1 Generation of Candidate Paraphrases. First, GRSBV trans-
forms the input utterances to lower-case as a preprocessing step
to avoid case sensitivity issues. The utterance is then tokenized
and each token is tagged with its respective Part-of-Speech (PoS).
GRSBV performs dependency parsing among tokens to identify
phrasal verbs. Tokens that appear in the stop word list are left as
they are. For each of the remaining ones, GRSBV runs lemmatization
and it uses the lemmas for finding synonyms in a lexical database,
i.e.,WordNet [31]. The synonyms obtained are then inflected (i.e.,
pluralization, singularization, and conjugation), based on the in-
flection of the respective original token before lemmatization. To
generate higher-quality candidate paraphrases, GRSBV changes a
token at a time with each of its respective synonyms. Hence, it does
not consider the simultaneous substitution of multiple tokens in
the input utterance.

2.3.2 Filtering Paraphrases. To further ensure the quality of the
generated paraphrases, GRSBV combines some of the strategies
proposed by Hassan et al. [20] to score the candidate paraphrases
to filter out poor ones. Many words have different meanings de-
pending on the context in which they are found. Given a candidate
paraphrase 𝑝 generated from the input utterance 𝑖 , and the word in
the original utterance𝑤𝑖 which was replaced with a synonym𝑤𝑝

in the paraphrase, the following metrics are computed.
Language Model (LM). A 5-gram language model is built using

an English corpus. Then, it is used to predict the probability of
every token in 𝑝 from the 6th to the last one, given the previous
five tokens. The LM score is computed as the average probability
obtained for such tokens. If the candidate paraphrase contains 5
or less tokens, the assigned score is 0. Rationale: The higher the
naturalness of 𝑝 , the higher the likelihood that 𝑝 is correct.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

Translation Pivoting (TP). The candidate paraphrase 𝑝 is trans-
lated into a foreign language (i.e., French) and it becomes 𝑝𝐸→𝐹 .
Then, 𝑝𝐸→𝐹 is translated into the original language (i.e., English)
again, and it becomes 𝑝𝐸→𝐹→𝐸 . If 𝑤𝑝 is still present in 𝑝𝐸→𝐹→𝐸 ,
the TP score is 1; otherwise, it is 0. Rationale: If𝑤𝑝 makes sense in
the context, the translation in English of the equivalent sentence in
the foreign language still contain𝑤𝑝 .

Word Vectors (WV). The Word2Vec model [30] is used to com-
pute the lexical similarity between𝑤𝑝 and all the tokens in 𝑖 which
are not stop-words. WV is equal to the average of such values. Ra-
tionale: If 𝑤𝑝 fits the context, the WV score will be higher (i.e., it
will be similar to the other tokens in 𝑖).

Web Search (WS). AWeb Search engine (specifically, Microsoft
Bing) is used to search 𝑝 (exact match of the whole sentence). The
WS score is equal to the total number of web pages retrieved. Ra-
tionale: The higher the number of pages retrieved, the higher the
likelihood that 𝑝 is correct.

Word-Sense Disambiguation (WSD). The Simplified Lesk al-
gorithm implemented in Pywsd [39] is used to retrieve the most
likely sense of 𝑤𝑖 . If the synset of the most common sense of 𝑤𝑖 ,
identified by using WordNet [31], contains𝑤𝑝 , the WSD score is 1;
otherwise, it is 0. Rationale: If the a synonym related to the most
commonmeaning of a word is used, it is more likely that 𝑝 is correct.

Lexical Frequency (LF). The synsets related to the all the senses
of𝑤𝑖 are identified through WordNet [31]. The LF score is equal to
the number of synsets for that contain𝑤𝑝 . Rationale: The higher
the number of senses for which𝑤𝑝 is a valid alternative of𝑤𝑖 , the
higher the likelihood that𝑤𝑝 is a correct synonym, regardless the
sense of𝑤𝑖 .

The metrics are then normalized and linearly combined using
weights identified through a genetic algorithm. Finally, a threshold
(0.59) is used to filter out paraphrases not sufficiently good. It is
worth noting that GRSBV requires the execution of many different
models and tools, some of which require training (e.g., LM) or
cannot be used for free (e.g., WS and TP). This makes the approach
hard to reproduce and slow in the execution.

3 GENERATING PARAPHRASES FOR ROBUST
TESTING VUIS

VUI-UPSET (Voice User Interfaces Utterance ParaphraSe gEnera-
Tor) is an approach that, given a seed sentence 𝑠 generates several
paraphrases of 𝑠 , 𝑃𝑠 . VUI-UPSET uses the same workflow defined
in the work by Guichard et al. [19]. First, it generates a set of can-
didate paraphrases, and then it filters them. As compared to the
approach by Guichard et al. [19] there are three main variations.
First, we use Part-of-Speech (PoS) tagging on the seed sentence
and define strategies to handle words based on their PoS. Second,
we change more than one synonym at a time to generate a higher
number of candidate paraphrases. Third, we replace the convoluted
and expensive filtering technique used in [19], which requires the
computation of six metrics, with a simpler approach that relies on
a Deep Learning model trained to check the semantic equivalence
of two sentences. Fig. 1 depicts the workflow of VUI-UPSET. We
describe below the main steps behind it.

Selection of
Seed

Sentences
PoS Tagging

Combination of
Synonyms and

Alternative Forms

tell me

k ≥ 0.75

RoBERTa

Figure 1: The workflow of VUI-UPSET.

3.1 Generation of Candidate Paraphrases
First, the developer selects the seed sentences of interest. Then, for
each of them, we use a PoS tagger to assign each word with a PoS.
We extract the set of synonyms and PoS-sensitive variations for
each word (or phrase) in the seed sentence, and we combine such
sets to generate the candidates (using the cartesian product). We
describe below in details all the steps.

Selection of Seed Sentences. To ensure the generation of good qual-
ity utterances, the developer manually selects the seed utterances
for which paraphrases will be generated. We do not generate para-
phrases for all the seed sentences for two reasons. First, we want to
select only grammatically correct sentences. This is also required
by GRSBV [19], as otherwise grammatically incorrect paraphrases
would be consequently generated. An example of grammatically
incorrect seed sentence is “I not sure”. Second, we want to exclude
sentences that are minor variations of other sentences. We do this
because our approach would generate, as a consequence, very simi-
lar (or identical) paraphrases starting from them. Such near-clones
would not be useful in practice since Alexa (like other virtual assis-
tants) is able to automatically compensate for such small variations.
For example, if both utterances “where is my order” and “where’s
my order” are present, we only keep one of them (e.g., the first one).
Finally, we exclude seed sentences (i) containing slots (i.e., variable
parts of the sentence), as handling them goes beyond the scope
of VUI-UPSET, and (ii) appearing in the default skill intent (e.g.,
AMAZON.HelpIntent) because, even though they can be expanded,
they are already handled by the framework.

PoS Tagging. The idea behind the generation of the new utter-
ances is to generate paraphrases that are semantically equivalent
to the set of seed sentences manually selected in the previous step.
At this point, in this second step, it is necessary to analyze the
syntactic structure of the seed sentence. This can be achieved by
performing a grammatical analysis of the sentence, i.e., the PoS
tagging. PoS tagging is a NLP task in which the goal is to find the
part of speech corresponding to each word contained in a sentence.
For this purpose, VUI-UPSET relies on the open source Stanford
CoreNLP tool [28]. Based on the grammatical analysis performed,
PoS tagging associates each word with a tag. We consider all 36
tags supported by Stanford CoreNLP. We defined a set of rules for
each type of PoS that will be used in the paraphrase generation
phase, as described in the next section.

Improving Voice User Interface Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Rules for the utterance generation based on the Part-
of-Speech Tags.

Tag Name Action

CC Coordinating Conjunctions Unchanged
CD Cardinal Numbers Unchanged
DT Determiners Unchanged
EX Existence There Unchanged
FW Foreign Words Unchanged
IN Prepositions and Sub. Conjunctions Unchanged
JJ Adjectives Synonyms or Omitted
JJR Comparative Adjectives Synonyms or Omitted
JJS Superlative Adjectives Synonyms or Omitted
LS List Item Markers Unchanged
MD Modal Verbs Unchanged
NN Common Nouns Synonyms
NNS Common Nouns (Plural) Synonyms
NNP Proper Nouns (Singular) Synonyms
NNPS Proper Nouns (Plural) Unchanged
PDT Predeterminers Unchanged or Omitted
POS Possessive Endings (’s) Unchanged
PRP Personal Pronouns {me | her | him | us } or Omitted
PRP Possessive Pronouns {my | our } or Omitted
RB Adverbs Synonyms or Omitted
RBR Comparative Adverbs Unchanged
RBS Superlative Adverbs Unchanged
RP Particles Unchanged
SYM Symbols Unchanged
TO to Unchanged
UH Interjection Unchanged or Omitted
VB Verbs (base form) Synonyms
VBD Verbs (past tense) Synonyms
VBG Verbs (gerund or present participle) Synonyms
VBN Verbs (past participle) Synonyms
VBP Verbs (non 3rd person singular present) Synonyms
VBZ Verbs (3rd person singular present) Synonyms
WDT Wh-determiner Unchanged
WP Wh-pronoun Unchanged
WP Possessive wh-pronoun Unchanged
WRB Wh-adverb Unchanged

Combination of Synonyms and Alternative Forms. First, we run
dependency parsing using Stanford CoreNLP to identify and retrieve
dependencies of interest among words. This is particularly impor-
tant for finding and correctly handling phrasal verbs [19]. For each
token, we then verify that it is not a stop word by using a predefined
stop word list [1]. In case it is classified as a stop word it remains
unchanged in all the generated paraphrases. At this point, based on
the PoS tagged in the previous step, we apply a consequent strategy,
as described in Table 1. Unchanged means that the word must be left
in the sentence as is in all the generated paraphrases. Some words,
indeed, should/can not be modified. For example, prepositions or
foreign words are never changed. Omitted means that the word
can be completely removed without altering the meaning of the
sentence. Therefore, some paraphrases will contain such a word,
while others will not. Synonyms means that the word can be re-
placed with a synonym. For some specific words, such as pronouns,
we manually identified and determined a set of alternatives. For
example, personal pronouns can be replaced with “my” or “our”.
All the phrases for which VUI-UPSET decided to use a “Synonyms”
strategy are lemmatized and we use WordNet [31] for finding, for
each of them, the complete list of synonyms. At this point, each
phrase is represented as a set of alternative forms, based on the
previously described strategies. We use the cartesian product to
generate candidate paraphrases. Finally, similarly to Guichard et al.
[19], we inflect the replaced words as the original words.

For example, if a word was plural in the seed sentence, its vari-
ation is pluralized as well in the paraphrase. We use the Pattern
approach [15], available as a Python library, to achieve this goal. For
example, let us consider the seed sentence “register my birthday”.
From the PoS analysis we get (register, VB) (my, PRP) (birthday,
NN). Then, in the paraphrase generation step we are going to con-
sider the following combinations: {remember|file|record|...} {|my|our}
{birthday|natal day} and finally we get a set of candidate paraphrases
(e.g., record my birthday, record our birthday, file our birthday, record
our natal day, remember birthday).

3.2 Filtering Paraphrases
It is possible that some paraphrases generated in the previous step
are not fully equivalent to the seed sentence since synonyms might
refer to different meanings of a word. For example, the candidate
paraphrase “time mark” might be generated from the seed sentence
“time check”. While “mark” is a synonym of “check”, the two words
have different senses in this context (i.e., “control” in the seed sen-
tence and “symbol of ticking off” in the paraphrase). Therefore, it
is necessary to discard paraphrases that are not semantically equiv-
alent to the seed sentence. To that end, VUI-UPSET integrates an
approach based on DL to filter out the generated sentences that are
not valid. Specifically, we use a semantic similarity model, RoBERTa
[25], which is a state-of-the-art NLP model, extension of the BERT
model. RoBERTa has the same architecture as BERT [16], but uses a
Byte Pair Encoding (BPE) as a tokenizer and a different pre-training
objective. We used a pre-trained model available on HuggingFace
[17]. In particular, we used the “large” version of RoBERTa, trained
on the STS Dataset [13], containing five English-language corpora
of varying size and domain, totaling over 160GB of uncompressed
text, for 500k steps. Given a pair of sentences, the model returns
a score between 0 and 1, which indicates the likelihood that the
two sentences are semantically equivalent. We run RoBERTa for
each pair ⟨seed, paraphrase⟩; we discard paraphrases for which the
returned score is below a given threshold 𝑘 . We discuss how we
tuned such a parameter in Section 4.

4 EMPIRICAL STUDY DESIGN
The goal of our study is to evaluate the effectiveness of VUI-UPSET
in the automatic generation of paraphrases for testing VUI-based
apps. In particular, we want to assess: (i) the semantic equivalence
between the input seeds and the utterances generated by VUI-
UPSET and (ii) the extent to which our approach allows develop-
ers to identify bugs in the behavior of an Alexa skill. As baseline
approaches, we exploit the work by Guichard et al. [19] and the
standard generation tool offered by the Amazon Developer Console.

In particular, we answer the following research questions (RQs):
RQ1: To what extent does VUI-UPSET generate valid paraphrases?

This RQ aims at evaluating the quality of the paraphrases
generated by VUI-UPSET in terms of semantic equivalence
compared to the original (seed) sentence.

RQ2: To what extent do the paraphrases generated by VUI-UPSET
allow to reveal bugs? With this RQ we want to understand if
VUI-UPSET allows developers to generate a higher number
of paraphrases that reveal bugs compared to the baseline
approaches.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

4.1 Study Context
To answer our RQs, we have performed the evaluation on a dataset
of 20 skills. These skills have been manually selected starting from
the list of most popular open source skills on GitHub (with popu-
larity based on number of stars). Several skills have been discarded
since not properly working, while for the ones working we checked
if both the voice interaction model and the programming logic
were available. As for the first one, we only considered interaction
models defined for the English language (en-US). As for the second,
we focused on skills written in JavaScript, as it is commonly used
to implement Alexa skills.

We excluded skills with multi-step dialogues between Alexa
and the user. The reason for this choice is based on the fact that
the management of skills that involve an interaction based on a
continuous dialogue must be done considering the states that allow
to predict the possible responses (e.g., through the use of a graph
of states). This goes beyond the scope of VUI-UPSET. Moreover,
each selected Alexa skill was imported into the Amazon Developer
Console to be verified. We executed some basic samples defined in
the interactionmodel of the skill, excluding again the ones for which
we did not observe a correct functioning (i.e., no correspondence
between the Voice Interaction Model and the Programming Logic).
Table 2 describes all the Alexa skills selected for our study.

4.2 Experimental Procedure
We compare VUI-UPSET to the two baselines (i.e., the ADC tool
and GRSBV) described in Section 2. While we directly use the ADC
tool, we needed to re-implement GRSBV since it is not publicly
available. We carefully followed the indications provided in the
paper to achieve this goal.

To answer RQ1, we evaluate the semantic equivalence between
the sentences generated by VUI-UPSET and the two baselines. First,
we manually selected the seed sentence for each Amazon Alexa
skill in our dataset. In the selection of the utterances to consider,
we chose the ones that (i) allowed us to cover all the intents of the
skill, (ii) were well-constructed to satisfy the requirements of both
VUI-UPSET and GRSBV (see Section 3), and (iii) did not contain
slots. Second, we executed VUI-UPSET and GRSBV providing as in-
put the selected seed sentences, obtaining for each skill a set of test
utterances filtered by the semantic equivalence model. Then, we ex-
ecuted the ADC tool directly from the Amazon Developer Console,
after having uploaded the skill and selected the seed utterances of
interest.

The number of paraphrases generated byVUI-UPSET andGRSBV
was very high (7,822 and 4,412, respectively), and manually evaluat-
ing their equivalence with the corresponding seed sentence would
have been infeasible. Therefore, for such approaches, we randomly
selected a sample of the generated utterances for manual evaluation.
We choose the size of the sample of each skill so that it allows us
to have a 5% margin of error with 95% confidence level. In total, we
selected 2,929 instances for VUI-UPSET and 2,486 for GRSBV. As for
the ADC tool baseline, we evaluated all the generated paraphrases
because the number was much lower (i.e., 457). As a result, in total,
we evaluated 5,872 paraphrases.

Each generated paraphrase was independently evaluated by at
least two authors, with three authors involved overall (i.e., each
paraphrase was assigned to two of the three authors involved in the
manual validation). More specifically, each author checked whether
the generated paraphrase and the respective seed sentence were
semantically equivalent. We say that two different sentences are
semantically equivalent if a humanmight use them interchangeably
to express the same intent and, therefore, to trigger the same action.
For example, the sentence “record my birthday” is semantically
different from the sentence “don’t forget my birthday”; however, if
users use the latter they most likely want to trigger the same action
they would express with the former.

Conflicts that arose after the comparison of the evaluations were
resolved through a discussion among the three evaluators aiming
at reaching consensus. The two evaluators originally assigned to
each paraphrase had disagreements in 94 cases in total for ADC
tool (i.e., ∼21%), 884 cases for VUI-UPSET (i.e., ∼30%) and 575 cases
in total for GRSBV (i.e., 23%) while independently evaluating the
correctness of the paraphrases. After discussion, consensus was
reached for all the paraphrases. In total, we manually performed
13,310 comparisons. Most of the conflicts arose in connection with
borderline situations in which the paraphrases were interpreted
differently by the evaluators. Furthermore, the high number of
conflicts often relate to many paraphrases (e.g., when an unusual
synonym was used for a given word in the seed sentence). For
example, from the seed sentence “register my birthday” a generated
paraphrase is “file my date of birth”. The use of the verb “file”
instead of “register” is correct, but unusual in this context. One of
the evaluators reported the whole paraphrase as equivalent, while
the other did not. The same happened for all the paraphrases that
used such a synonym.)

For each skill we measure the percentage of correct paraphrases.
Then, given such percentages, we compare the three approaches
by using the Wilcoxon Signed-Rank test [42]. The null hypothe-
sis is that there is no difference between VUI-UPSET and the two
baselines in terms of percentage of correctly generated paraphrases.
We reject the null hypothesis if the 𝑝-value is lower than 0.05. We
correct the 𝑝-values for multiple comparisons by using the Ben-
jamini and Hochberg method [8] to calculate the adjusted 𝑝-values.
We also compute the effect size to quantify the magnitude of the
significant differences we find. We use Cliff’s Delta [27] since it
is non-parametric. Cliff’s delta lays in the interval [-1, 1]: The ef-
fect size is negligible for |𝛿 | < 0.148, small for 0.148 ≤ |𝛿 | < 0.33,
medium for 0.33 ≤ |𝛿 | < 0.474, and large for |𝛿 | ≥ 0.474. Finally, we
estimate the absolute number of correctly generated paraphrases
over the whole population for each skill 𝑠 and approach 𝑎. To do
this, we consider the percentage of correctly generated paraphrases
𝐶𝑠
𝑎 computed on the sample, the total number of paraphrases gen-

erated with 𝑎 for 𝑠 , 𝐺𝑠
𝑎 , and the 5% margin of error given by the

considered sample size (95% confidence level). Specifically, we com-
pute the confidence interval of the number of correctly generated
paraphrases for 𝑠 as 𝑃𝑠𝑎 = (𝐶𝑠

𝑎 ± 0.05) ×𝐺𝑠
𝑎 .

To compare the absolute number of correctly generated para-
phrases, we cannot check the difference in terms of absolute number
of correct paraphrases found in the manually evaluated samples:
Such numbers, indeed, strongly depend on the sample size, and we
will have different sample sizes for the different approaches.

Improving Voice User Interface Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Skills used for the empirical evaluation and their characteristics.

seeds # generated paraphrases
Skill Description total selected ADC Tool GRSBV VUI-UPSET

Ilama facts provides space facts and trivia 14 8 40 50 133
Happy birthday stores birthday information 6 6 12 103 211
City guide recommends activities in the city 7 6 25 59 23
Quiz game quiz game about a topic 6 5 16 66 268
Scheduling schedules calls and appointments 9 9 17 193 102
Name the show guess game about TV shows 18 15 35 204 167
Berry bash quiz game about a topic 25 20 71 371 769
History facts provides interesting historical

facts
7 4 21 12 13

Particle cloud provides access to Particle de-
vices

19 14 19 298 391

Greeting sender order management and sharing 17 16 11 382 319
Button trivia single- and multi-player quiz

game
24 17 23 373 523

Video app allows to play a video 8 8 14 112 39
Salesforce identifies opportunities on Sales-

force
8 6 11 108 10

Store Amazon pay VUI app for the Amazon Store 45 24 38 557 1168
Timers manages custom timers 16 11 21 407 473
Pocket manages lists of items 21 11 32 178 1421
Piano player teaches the piano 9 7 5 172 201
Week calendar allows to plan the vacation 12 7 15 462 1342
Crash notification demonstrates messaging for dif-

ferent errors
14 9 5 231 78

Memory memory-matching game 4 4 26 74 171

Total 289 207 457 4,412 7,822

For example, if we have two samples of 10 and 100 paraphrases
for two of the approaches and we find that 9 out of 10 are correct
in the first sample while 10 out of 100 are correct for the second
sample, it is most likely that the first one would have achieved
better result than the second one if we evaluated the whole popu-
lation. Therefore, we compare the confidence intervals identified
on the estimated number of correct paraphrases over the whole
populations for each skill independently. If there is no overlap be-
tween the intervals of the three approaches, we say that the one
that generates a significantly higher number of correct paraphrases
for a given skill as compared to the other approaches (with 95%
confidence level). If there is an overlap, instead, we cannot exclude
that the difference is due to the chance. It is worth noting that for
the ADC tool we have point intervals because we evaluated the
whole population (i.e., 0% margin of error).

To answer RQ2, based on the results obtained in RQ1, we de-
fine and execute test cases containing the generated paraphrases
considering only the valid paraphrases we manually identified to
answer RQ1. The execution of the generated test cases is performed
by through the NLU evaluation function from the developer console.
Test cases are marked as PASSED when the actual intent activated
for a the related paraphrase in the virtual version of Alexa matches
the expected intent indicated in the VIM for the seed sentence from
which the paraphrase originates. Otherwise, they are marked as
FAILED.

For each skill, we compute the percentage of generated bug-
revealing paraphrases by computing the number of FAILED test
cases divided by the total number of valid paraphrases. We do this
to understand if any of the approaches is able to outperform the
others in terms of quality of the generated paraphrases. Then, we
estimate the absolute number of bug-revealing paraphrases for each
approach in the original population of paraphrases. To do this, we
use a similar process used for RQ1. We start from the number of
correct paraphrases (both the lower and the upper bound of the
confidence interval) to estimate the number of bug-revealing para-
phrases. Also in this case, we consider 5% margin of error for both
such values. We make sure that such an interval is lower-bounded
by the number of actually found bug-revealing paraphrases in the
sample (we are certain that at least such a number of bug-revealing
paraphrases exist) and upper-bounded by the number of generated
paraphrases. We use the Wilcoxon signed-rank test [42] to compare
the percentage of bug-revealing paraphrases. The null hypothesis
is that there is no difference in the percentage of bug-revealing
paraphrases generated by the approaches. Also in this case, we
report the Cliff’s Delta [27]. To compare the absolute number of
bug-revealing paraphrases, we use an analogous approach used in
RQ1: If there is no overlap between the confidence intervals of the
three approaches, we say that the one that generates a larger num-
ber of bug-revealing paraphrases for a given skill is significantly
better than other for such a skill (with 95% confidence level).

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

4.3 Tuning the Semantic Threshold for
VUI-UPSET

VUI-UPSET requires the tuning of a threshold, 𝑘 . We empirically
determine such a threshold by running VUI-UPSET on a set of 10
Alexa skills different from the set we use for the empirical study.
To do this, we randomly selected skills matching the same criteria
we used for the empirical study, but also having a voice interac-
tion model with at least 10 sample utterances after the manual
selection. We ran VUI-UPSET without the filtering step, i.e., we
only generated the candidate paraphrases. Then, we computed the
similarity score between the seed sentences and the generated ones.
As a result, we obtained a set of pairs of sentences composed of
the source seed and the generated paraphrase, plus the similarity
score between them. Two of the authors independently performed
a manual analysis on a sample selected among all the sentences
pairs, with 5%margin of error (95% confidence level). The similarity
score of each pair was not shown to the evaluators to avoid any
influence. In our evaluation, we analyzed a total of 371 sentence
pairs, indicating “not correct” with 0 and “correct” with 1. After
comparing the two assessments, we discussed the conflicts found
to motivate the final choice (0 or 1). In total, the two evaluators dis-
agreed in 94 paraphrases generated by ADC tool, 884 paraphrases
generated by VUI-UPSET and 406 paraphrases generated by GRSBV
and in the end they reached consensus on all of them. As a result of
this process, each pair was assigned with a correctness value and a
similarity score.

We tested different threshold values, between 0.05 and 0.95 with
a step of 0.05. We did not test the extremes because it would have
implied to include (0) or discard (1) all the paraphrases. For each
threshold, we computed well-known metrics in information re-
trieval, namely precision and recall. Given a candidate threshold 𝑘 ,
we have a set of retrieved paraphrases (i.e., paraphrases for which the
similarity is higher than 𝑘). The set of correctly retrieved paraphrases
is the subset of retrieved paraphrases for which, in our manual vali-
dation, we marked the paraphrases as equivalent to the respective
seed. Finally, the set of correct paraphrases is the set of all the para-
phrases that we manually marked as equivalent (regardless of the
fact that they were retrieved or not). Given such sets precision𝑘
is computed as |correctly retrieved paraphrases𝑘 |

|retrieved paraphrasesk | , while recall𝑘 is com-

puted as |correctly retrieved paraphrases𝑘 |
|correct paraphrases | . Additionally, we computed

the 𝐹𝛽 score, i.e., the generalization of the more commonly used 𝐹1
score. While the latter gives equal weight to precision and recall,
with the 𝐹𝛽 score it is possible to give more weight to precision
(𝛽 < 1) or to recall (𝛽 > 1). The 𝐹𝛽 score is computed as:

𝐹𝛽,𝑘 = (1 + 𝛽2) · precisionk · precisionk
(𝛽2 · precisionk) + recallk

In our context, we set 𝛽 = 0.5, to give more importance to precision:
Given the high number of paraphrases generated by the first step of
VUI-UPSET, we are more interested in discarding non-equivalent
paraphrases than in including all the valid paraphrases. We set 𝑘
as the threshold that allows to achieve the best 𝐹0.5 score.

We report in Table 3 the results of the tuning. The best 𝐹0.5
score can be achieved using as a threshold 𝑘 = 0.75. With it, we
achieve 0.51 precision (i.e., half of the generated paraphrases are
correct) and 0.4 recall (i.e., we discard 60% of the valid generated

Table 3: Metrics computed for the similarity threshold evalu-
ation.

𝑘 Precision Recall F0.5 Score

0.05 0.24 1.00 0.28
0.10 0.24 1.00 0.29
0.15 0.25 1.00 0.29
0.20 0.27 1.00 0.31
0.25 0.28 0.97 0.33
0.30 0.30 0.92 0.34
0.35 0.32 0.91 0.37
0.40 0.33 0.86 0.38
0.45 0.34 0.81 0.38
0.50 0.38 0.80 0.42
0.55 0.41 0.73 0.44
0.60 0.45 0.69 0.48
0.65 0.45 0.58 0.47
0.70 0.47 0.48 0.47
0.75 0.51 0.40 0.49
0.80 0.55 0.31 0.48
0.85 0.62 0.18 0.42
0.90 0.87 0.15 0.44
0.95 1.00 0.03 0.15

paraphrases). The identified threshold is in line with the thresh-
old used for determining the semantic similarity between texts in
traceability link recovery [26]. It is worth noting that it would be
possible to select other values of 𝑘 depending on the context in
which VUI-UPSET is executed and on how many false-positives
practitioners are willing to manually discard.

4.4 Replication Package
We publicly release the implementation of VUI-UPSET, our re-
implementation of GRSBV and the data used for answering RQ1
and RQ2 in our replication package [18].

5 EMPIRICAL STUDY RESULTS
This section reports the analysis of the results for the two research
questions of our study.

5.1 RQ1: Paraphrase Correctness
The results of the analysis conducted for RQ1 are described at
the top part of Table 4. It is worth noting that, since VUI-UPSET
generates a higher number of paraphrases, the size of the evaluated
sample is naturally larger because of the methodology we used to
select it. The first clear result we obtained is that the ADC tool
generates a higher percentage of correct paraphrases (74.0%) as
compared to VUI-UPSET (40.5%) and GRSBV (21.2%). For all the
skills except two, indeed, the ADC tool achieves the best percentage
of correct paraphrases. When comparing VUI-UPSET and the ADC
tool by analyzing the percentage of correct paraphrases generated,
we obtain an adjusted p-value of 0.003153, with a large effect size (𝛿
= -0.5875). We obtain an analogous result when comparing the ADC
tool with GRSBV (p < 0.001, 𝛿 = -0.88, large magnitude). For a skill
(Piano player), the ADC tool fails to generate correct paraphrases:
In this case, VUI-UPSET achieves the highest percentage of correct
paraphrases (∼38%).

Improving Voice User Interface Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 4: Comparison among VUI-UPSET, GRSBV, and the ADC tool in terms of correctness of generated paraphrases (top part)
and their bug-revealing capability (bottom part). ◦ indicates that the column refers to the evaluated sample, while ★ indicates
that it refers to the estimated value on the whole population (95% confidence level). We report in boldface the significantly best
results, while we mark with a * the cases in which the best result is shared by two approaches.

RQ1: Correctness of the Generated Paraphrases

ADC Tool VUI-UPSET GRSBV
Skill #generated #correct %correct #generated◦ #correct◦ %correct #correct★ #generated◦ #correct◦ %correct #correct★

llama facts 40 33 82.50% 98 74 75.51% 100 ± 7 44 16 36.36% 18 ± 2
Happy birthday 12 11 91.66% 136 47 34.55% 73 ± 11 79 21 26.58% 27 ± 5
City guide 25 22 88.00% 22 17 77.27% 18 ± 1 51 7 13.72% 9 ± 2
Quiz game 16 14 87.50% 158 64 40.50% 109 ± 13 54 32 59.26% 39 ± 3
Scheduling 17 13 76.47% 81 54 66.66% * 68 ± 5 129 46 35.66% * 69 ± 10
Name the show 35 27 77.14% 117 84 71.79% 120 ± 8 133 28 21.05% 43 ± 10
Berry bash 71 51 71.83% 256 97 37.89% 291 ± 38 188 36 19.14% 71 ± 19
History facts 21 17 80.95% 13 12 92.31% 12 ± 0 12 2 16.66% 2 ± 0
Particle cloud 19 10 52.63% 194 53 27.32% 107 ± 20 168 27 16.07% 48 ± 15
Greeting sender 11 6 54.54% 175 32 18.28% * 58 ± 16 192 14 7.29% * 30 ± 16
Button trivia 23 22 95.65% 222 103 46.39% 243 ± 26 188 44 23.40% 87 ± 19
Video app 14 12 85.71% 35 23 65.71% * 26 ± 2 87 17 19.54% * 22 ± 5
Salesforce 11 8 72.72% 10 6 60.00% 6 ± 0 84 4 4.76% 7 ± 3
Store Amazon pay 38 18 47.37% 289 61 21.11% 247 ± 58 228 29 12.72% 71 ± 28
Timers 21 16 76.19% 205 95 46.34% 219 ± 24 198 26 13.13% 53 ± 20
Pocket 32 26 81.25% 303 86 28.38% 403 ± 71 122 44 36.07% 64 ± 9
Piano player 5 0 0.00% 132 50 37.87% 76 ± 10 119 10 8.40% 17 ± 7
Week calendar 15 7 46.66% 299 117 39.13% 525 ± 27 210 61 29.05% 134 ± 23
Crash notification 5 3 60.00% 65 46 70.77% * 55 ± 4 139 37 26.62% * 61 ± 12
Memory 26 22 84.61% 119 64 53.78% 92 ± 9 61 26 42.62% 32 ± 4

RQ2: Paraphrase Capability of Finding Bugs

ADC Tool VUI-UPSET GRSBV
Skill #correct #bugs %bugs #correct◦ #bugs◦ %bugs #bugs★ # correct◦ # bugs◦ %bugs #bugs★

llama facts 33 8 24.24% 74 9 12.16% 14 ± 5 16 0 0.00% 1 ± 1
Happy birthday 11 1 9.09% 47 13 27.66% 23 ± 4 21 3 14.29% 5 ± 2
City guide 22 *3 13.63% 17 0 0.00% 0 ± 0 7 1 14.28% * 2 ± 1
Quiz game 14 0 0.00% 64 0 0.00% 3 ± 3 32 0 0.00% 1 ± 1
Scheduling 13 1 7.69% 54 5 9.26% * 8 ± 3 46 4 8.70% * 7 ± 3
Name the show 27 9 33.33% 84 37 44.08% 56 ± 6 28 10 35.71% 19 ± 3
Berry bash 51 5 9.80% 97 0 0.00% 8 ± 8 36 3 8.33% 7 ± 4
History facts 17 9 52.94% 12 1 8.33% 1 ± 0 2 0 0.00% 0 ± 0
Particle cloud 10 0 0.00% 53 3 5.66% * 8 ± 5 27 2 7.41% * 5 ± 3
Greeting sender 6 1 16.66% 32 5 15.63% 12 ± 4 14 6 42.86% 20 ± 2
Button trivia 22 6 27.27% 103 14 13.59% 37 ± 13 44 0 0.00% 3 ± 3
Video app 12 0 0.00% 23 1 4.35% 2 ± 1 17 13 76.47% 21 ± 1
Salesforce 8 0 0.00% 6 0 0.00% 0 ± 0 4 4 1.00% 11 ± 1
Store Amazon pay 18 4 22.22% 61 25 40.98% 125 ± 15 29 0 0.00% 2 ± 2
Timers 16 3 18.75% 95 35 36.84% 89 ± 12 26 0 0.00% 2 ± 2
Pocket 26 0 0.00% 86 1 1.16% 15 ± 14 44 0 0.00% 2 ± 2
Piano player 0 0 0.00% 50 0 0.00% 2 ± 2 10 0 0.00% 1 ± 1
Week calendar 7 1 14.29% 117 0 0.00% 15 ± 15 61 0 0.00% 4 ± 4
Crash notification 3 1 33.33% 46 21 45.65% * 27 ± 3 37 15 40.54% *30 ± 4
Memory 22 0 0.00% 64 39 60.94% 61 ± 5 26 6 23.07% 8 ± 2

Similar results are achieved for Crash notification, where VUI-
UPSET achieves a higher percentage of correct paraphrases (∼
71% vs 60%). We observed also a significant difference between
VUI-UPSET and GRSBV: In this case, the adjusted p-value is lower
than 0.001, again with a large effect size (𝛿 = 0.755). GRSBV never
achieves the best percentage of correct paraphrases. The boxplot
in Fig. 2 (left part) visually confirm the difference we numerically
observed. Despite the greater number of correct paraphrases gen-
erated by the ADC tool, there are some very common paraphrases
that the ADC tool and GRSBV are unable to reproduce. For example,

they do not generate paraphrases with personal pronoun variations
(e.g., “give me a space fact” → “give her a space fact”) As for the
absolute number of correct paraphrases, instead, the results are dif-
ferent. Given the higher number of generated paraphrases and the
acceptable percentage of correct paraphrases, VUI-UPSET achieves
the best results for most of the skills (17 out of 20, 3 of which
non-significantly different from the results achieved by GRSBV).
Furthermore, it is important to note that the number of the seed
sentences can affect the performance of VUI-UPSET in terms of
percentage of correctly generated paraphrases.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

ADC VUI−UPSET GRSBV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

co
rr

ec
tn

es
s

ADC VUI−UPSET GRSBV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bu
g−

re
ve

al
in

g
pa

ra
ph

ra
se

s
(%

)
Figure 2: Distribution of percentages of correct (left) and bug-
revealing (right) paraphrases over the 20 skills analyzed.

When many seed sentences are available, the number of para-
phrases generated will be higher and, consequently, there will be
a higher chance that semantically non-equivalent paraphrases are
generated. On the other hand, this does not happen for the ADC
tool since it generates a number of paraphrases that does not al-
ways depend on the number of seed sentences. For example, for
the skill Crash notification, which has a few seed sentences (9), the
ADC tool generates 5 paraphrases with a 60.00% correctness, while
VUI-UPSET generates 65 paraphrases, with a 70.77% correctness.
Conversely, for the skill Barry bash, which contains many seed sen-
tences (20), the ADC tool generates 71 paraphrases and obtains a
correctness of 71.83%, while VUI-UPSET generates 256 paraphrases
and it achieves 37.89% correctness.

Answer to RQ1. The ADC tool achieves a higher percentage of
correct paraphrases, while VUI-UPSET generates the highest ab-
solute number of correct paraphrases in most of the cases. GRSBV
is never significantly better than the other two approaches.

5.2 RQ2: Paraphrase Capability of Finding Bugs
We report the results of the analysis conducted for RQ2 in the top
part of Table 4. It can be noticed that the approaches appear to
achieve similar results. In total, VUI-UPSET generates a slightly
higher percentage of bug-revealing paraphrases (∼17.6%) as com-
pared to the ADC tool (∼15.4%) and GRSBV (∼12.7%). However, we
can not reject any null hypothesis (as also confirmed by the boxplots
in Fig. 2). Indeed, in all cases, the 𝑝-value obtained is higher than
0.05 (never lower than 0.85). Similarly, the effect size is negligible
in all comparisons. Therefore, a first conclusion is that none of the
compared approaches inherently generates better paraphrases for
identifying bugs. Thus, intuitively, the larger the absolute number
of generated paraphrases, the better (i.e., the higher the number
of generated bug-revealing paraphrases). Indeed, VUI-UPSET gen-
erates the highest absolute number of bug-revealing paraphrases
for 10 skills out of 20 (in two cases it is not significantly different
from GRSBV, while in one case is not significantly different from
the ADC tool). The ADC tool achieves the best results only for
two skills, but only for one (History facts) it is significantly better
from both the other techniques. GRSBV, instead, achieves the best
results for 7 skills, but only in 3 cases such a result is not shared
with another approach. If we sum the results obtained over the
20 skills, we find that VUI-UPSET generates between 388 and 624
bug-revealing paraphrases, while the ADC tool generates 96 and
GRSBV between 109 and 193.

There are skills for which VUI-UPSET works particularly well:
For example, it generates 125 ± 15 bug-revealing paraphrases for
the skill Store Amazon pay, which is remarkable if we compare it to
the two other approaches (4 for the ADC tool and 0 for GRSBV). At
the same time, we can observe that, for some skills (i.e., Quiz game,
Salesforce, and Piano player), we could not find any bug-revealing
paraphrases generated by the three approaches, despite the high
number of correct paraphrases generated by VUI-UPSET (50 in the
sample, 76 ± 10 in the whole population). This probably happens
because the synonyms selected, regardless of their number, are
clearly similar to the words used in the original seeds. For example,
in the “Piano player” skill, the word “scale” has “musical scale” as a
valid synonym, and the word “lesson” is often replaced with “object
lesson”. Every time such substitutions happen, Alexa is still able to
compensate for such small variations.

An example of bug found through VUI-UPSET is the following.
For the Particle cloud skill, given the seed sentence “register my
date of birth,” VUI-UPSET generates, among the other paraphrases,
“register our date of birth.” Such a paraphrase is semantically equiva-
lent to the seed sentence but, when tested in the Alexa Developer
Console, it does not allow to obtain the same result (i.e., the test
case fails).

Answer to RQ2. The three approaches generate a similar per-
centage of bug-revealing paraphrases, but VUI-UPSET generates
the highest absolute number of such paraphrases.

5.3 Discussion
Based on the results obtained, we identified some future research di-
rections for researchers interested in this field and some guidelines
for practitioners.

Future Research Directions.While for RQ1 we can observe
clear trends, i.e., the results are almost the same for all the skills,
this was not the case for RQ2, with substantial variation among the
subject skills. To analyze this phenomenon more in depth, we tried
to understand how different were the paraphrases generated by
the three approaches. To do this, we compute the overlap between

couples of approaches by using the formula
|correct𝑣𝑖∩correct𝑣𝑗 |
|correct𝑣𝑖∪correct𝑣𝑗 |

.
Despite the similarity between VUI-UPSET and GRSBV, they

only generate 189 shared paraphrases (∼1.5%). Instead, VUI-UPSET
and the ADC tool generate 11 shared paraphrases (∼0.1%), while
GRSBV and the ADC tool share only two paraphrases (<0.1%). Only
such two paraphrases occur in all the approaches. In other words,
the three compared approaches are highly complementary. It might
be worth exploring to what extent combining such approaches
allows to generate more interesting bug-revealing paraphrases. A
particularly promising direction might be to combine the ADC
tool with VUI-UPSET: The former can be used to change the form
of the seed sentence (e.g., from positive to negative or question),
while the latter can be used to amplify the number of paraphrases
by generating variations not only for the seed sentences, but also
for the sentences output of the ADC tool. As for VUI-UPSET and
GRSBV, a clear weak point we observed is that they sometimes fail
to find adequate synonyms. This is partially due to the fact that the
filtering step fails at discarding incorrect paraphrases.

Improving Voice User Interface Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

However, in other cases, such a step fails because for words
with a given PoS, synonyms with a different PoS are used. For
example, the “start story” input utterance for the skill “Memory” is
wrongly paraphrased into “first tale”. This happens because “first” is
a synonym of the noun “start”. However, the verb “start” is used in
this context. Filtering out the synonyms of the noun “start” would
have allowed VUI-UPSET not to generate this paraphrase in the
first place.

Guidelines for Developers.Generating paraphrases for testing
VUIs is still at an early research stage and only a production-ready
tool exists in practice. Still, we try to point out some guidelines
for practitioners to help developers decide how to test their apps.
The ADC tool is the best choice when developers want to quickly
test their app. Indeed, they need to manually discard only a few
incorrect sentences and they will likely find some bug-revealing
paraphrases. However, safety- and securty-critical apps (e.g., for
home automation or home banking, respectively) might benefit
from a more thorough testing phase. VUI-UPSET might help them
to generate more bug-revealing sentences, at the cost of discarding
a higher number of incorrect paraphrases.

6 THREATS TO VALIDITY
Threats to construct validity. We manually selected a sample
of the seed utterances to use for generating paraphrases from the
voice interaction models of the skills we considered based on the
requirements of VUI-UPSET and GRSBV. Choosing different ut-
terances might have resulted in different results. Also, there is a
possible subjectivity introduced during manual analysis for the re-
sults of both the RQs. This threat was mitigated by using a rigorous
qualitative analysis process, as described in Section 4.

Threats to internal validity. We did not directly use the VUI
provided by the skills through Alexa to run the tests, but we de-
ployed the skills in the test environment of the ADC and simulated
the execution of paraphrases through the NLU-evaluation tool. Di-
rectly using the VUI might have allowed finding other issues (e.g.,
related to failures in the speech recognition). However, this goes
beyond the scope of our approach and of the other approaches
we compared. Another threat is related to the fact that we needed
to re-implement GRSBV since it was not available. Also, the de-
scription of some of the metrics of the filtering step in the original
paper [19] were slightly ambiguous. We implemented the metrics
based on our interpretation, as explained in Section 2. To foster the
verifiability and the replicability of VUI-UPSET we publicly release
our implementation.

Threats to external validity. Our results are based on 20 Alexa
skills. Such a sample might not be representative of all the Alexa
skills. We mitigated this risk by choosing diverse skills in terms
of application domain. In our experiment, we selected Alexa skills
developed in JavaScript. However, we expect no significant differ-
ences in skills developed in other programming languages since
our approach focuses on the VIM rather than on the programming
logic of the skills. Finally, it is possible that the results obtained
do not generalize to other technologies, e.g., the one provided by
Google for their Actions. Indeed, the results of RQ2 depend on how
tolerant the framework is with variations of the pre-defined seed
utterances, and this might change.

7 CONCLUSION AND FUTUREWORK
The interest in Voice User Interface-based apps has grown in the last
years. Research on automated test for VUIs, however, is still in its
infancy. In this paper, we presented VUI-UPSET, an approach that
build upon previous research in chatbot-testing for automatically
generating paraphrases that allow developers to test VUIs. We run
a large empirical study on 20 open-source Alexa skills, and we
compared VUI-UPSET with two state-of-the-art approaches, i.e.,
the paraphrase generation tool integrated in the Amazon Developer
Console (ADC tool) and GRSBV, defined for chatbot-testing. Our
results show that the ADC tool generates the highest percentage
of correct paraphrases, but VUI-UPSET allows to generate a higher
absolute number of them. Also, while the three approaches generate
a comparable percentage of bug-revealing paraphrases, VUI-UPSET
generates a significantly higher absolute number of bug-revealing
paraphrases for more skills than the others. Future work will be
aimed at automating the very first step of VUI-UPSET (i.e., selection
of input seed sentences), on supporting slots, and on replicating
the evaluation on other technologies (e.g., Actions on Google). We
will also experiment with the use of existing deep learning models
specifically aimed at generating paraphrases [43] in the paraphrase
generation phase. Finally, to better calibrate VUI-UPSET, we plan
to run a study with developers to understand what number of non-
equivalent paraphrases generated by VUI-UPSET they might find
acceptable.

REFERENCES
[1] 2022. Stop Word List. https://countwordsfree.com/stopwords.
[2] "Amazon". 2018. Alexa. https://developer.amazon.com/en-US/alexa.
[3] "Amazon". 2018. Alexa Slots. https://developer.amazon.com/en-US/docs/alexa/

custom-skills/slot-type-reference.html.
[4] "Amazon". 2018. Amazon Developer. https://developer.amazon.com/en/.
[5] "Amazon". 2018. Amazon official documentation. https://developer.amazon.com/

en-US/docs/alexa/custom-skills/get-utterance-recommendations.html.
[6] "Amazon". 2018. NLU-evaluation tool. https://developer.amazon.com/it-IT/docs/

alexa/smapi/nlu-evaluation-tool-api.html.
[7] "Amazon". 2018. Voice Interaction Models. https://developer.amazon.com/en-

US/docs/alexa/ask-overviews/voice-interaction-models.html.
[8] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289–300.

[9] Jordan J Bird, Anikó Ekárt, and Diego R Faria. 2021. Chatbot Interaction with Ar-
tificial Intelligence: human data augmentation with T5 and language transformer
ensemble for text classification. Journal of Ambient Intelligence and Humanized
Computing (2021), 1–16.

[10] Josip Bozic, Oliver A Tazl, and Franz Wotawa. 2019. Chatbot testing using AI
planning. In 2019 IEEE International Conference On Artificial Intelligence Testing
(AITest). IEEE, 37–44.

[11] Josip Bozic and Franz Wotawa. 2019. Testing chatbots using metamorphic rela-
tions. In IFIP International Conference on Testing Software and Systems. Springer,
41–55.

[12] Jordi Cabot, Loli Burgueno, Robert Clarisó, Gwendal Daniel, Jorge Perianez-
Pascual, and Roberto Rodriguez-Echeverria. 2021. Testing challenges for NLP-
intensive bots. In 2021 IEEE/ACM Third International Workshop on Bots in Software
Engineering (BotSE). IEEE, 31–34.

[13] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver,
Canada, 1–14. https://doi.org/10.18653/v1/S17-2001

[14] Michael H Cohen, Michael Harris Cohen, James P Giangola, and Jennifer Balogh.
2004. Voice user interface design. Addison-Wesley Professional.

[15] Tom De Smedt and Walter Daelemans. 2012. Pattern for python. The Journal of
Machine Learning Research 13, 1 (2012), 2063–2067.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

https://countwordsfree.com/stopwords
https://developer.amazon.com/en-US/alexa
https://developer.amazon.com/en-US/docs/alexa/custom-skills/slot-type-reference.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/slot-type-reference.html
https://developer.amazon.com/en/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/get-utterance-recommendations.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/get-utterance-recommendations.html
https://developer.amazon.com/it-IT/docs/alexa/smapi/nlu-evaluation-tool-api.html
https://developer.amazon.com/it-IT/docs/alexa/smapi/nlu-evaluation-tool-api.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/voice-interaction-models.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/voice-interaction-models.html
https://doi.org/10.18653/v1/S17-2001

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

[17] "Hugging Face". 2022. Hugging Face. https://huggingface.co/cross-encoder/stsb-
roberta-large.

[18] Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and
Rocco Oliveto. 2022. Replication Package of "Sorry, I don’t Understand: Improving
Voice User Interface Testing". https://doi.org/10.6084/m9.figshare.19726204.v1.

[19] Jonathan Guichard, Elayne Ruane, Ross Smith, Dan Bean, and Anthony Ven-
tresque. 2019. Assessing the robustness of conversational agents using para-
phrases. In 2019 IEEE International Conference On Artificial Intelligence Testing
(AITest). IEEE, 55–62.

[20] Samer Hassan, Andras Csomai, Carmen Banea, Ravi Sinha, and Rada Mihal-
cea. 2007. Unt: Subfinder: Combining knowledge sources for automatic lexical
substitution. In Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval-2007). 410–413.

[21] Kuan-Hao Huang and Kai-Wei Chang. 2021. Generating syntactically con-
trolled paraphrases without using annotated parallel pairs. arXiv preprint
arXiv:2101.10579 (2021).

[22] "KayLearch". 2018. KayLearch. https://github.com/KayLerch/alexa-utterance-
generator/.

[23] Federica Laricchia. 2022. Number of digital voice assistants in use worldwide
from 2019 to 2024. https://www.statista.com/statistics/973815/worldwide-digital-
voice-assistant-in-use/.

[24] Kwang B Lee and Roger A Grice. 2006. The design and development of user
interfaces for voice application in mobile devices. In 2006 IEEE International
Professional Communication Conference. IEEE, 308–320.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[26] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2007.
Recovering traceability links in software artifact management systems using
information retrieval methods. ACM Transactions on Software Engineering and
Methodology (TOSEM) 16, 4 (2007), 13–es.

[27] Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011.
Cliff’s Delta Calculator: A non-parametric effect size program for two groups of
observations. Universitas Psychologica 10, 2 (2011), 545–555.

[28] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations. 55–60.

[29] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. 94–105.

[30] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regularities
in continuous space word representations. In Proceedings of the 2013 conference of
the north american chapter of the association for computational linguistics: Human
language technologies. 746–751.

[31] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[32] Kevin Moran, Mario Linares Vásquez, and Denys Poshyvanyk. 2017. Automated
GUI testing of Android apps: from research to practice. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 505–
506.

[33] Leah Nicolich-Henkin, Taichi Nakatani, Zach Trozenski, Joel Whiteman, and
Nathan Susanj. 2021. Comparing Data Augmentation and Annotation Stan-
dardization to Improve End-to-end Spoken Language Understanding Models.
In Proceedings of the 35th Conference on Neural Information Processing Systems
(NeurIPS). 1–6.

[34] Octavany Octavany and Arya Wicaksana. 2020. Cleveree: an artificially intel-
ligent web service for Jacob voice chatbot. TELKOMNIKA (Telecommunication
Computing Electronics and Control) 18, 3 (2020), 1422–1432.

[35] Kabir S Said, Liming Nie, Adekunle A Ajibode, and Xueyi Zhou. 2020. GUI
testing for mobile applications: objectives, approaches and challenges. In 12th
Asia-Pacific Symposium on Internetware. 51–60.

[36] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805–824.

[37] Siamak Shakeri and Abhinav Sethy. 2019. Label dependent deep variational
paraphrase generation. arXiv preprint arXiv:1911.11952 (2019).

[38] Alex Sokolov and Denis Filimonov. 2020. Neural machine translation for para-
phrase generation. arXiv preprint arXiv:2006.14223 (2020).

[39] "Liling Tan. 2014. Pywsd: Python implementations of word sense disambiguation
(wsd) technologies [software]. https://github.com/alvations/pywsd.

[40] Twitter. 2022. Twitter Alexa Skill. https://www.amazon.com/dp/B01LFJO3M0.
[41] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a semantic parser

overnight. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 1332–1342.

[42] Robert F Woolson. 2007. Wilcoxon signed-rank test. Wiley encyclopedia of clinical
trials (2007), 1–3.

[43] Jianing Zhou and Suma Bhat. 2021. Paraphrase Generation: A Survey of the
State of the Art. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Online
and Punta Cana, Dominican Republic, 5075–5086. https://doi.org/10.18653/v1/
2021.emnlp-main.414

https://huggingface.co/cross-encoder/stsb-roberta-large
https://huggingface.co/cross-encoder/stsb-roberta-large
https://doi.org/10.6084/m9.figshare.19726204.v1
https://github.com/KayLerch/alexa-utterance-generator/
https://github.com/KayLerch/alexa-utterance-generator/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://github.com/alvations/pywsd
https://www.amazon.com/dp/B01LFJO3M0
https://doi.org/10.18653/v1/2021.emnlp-main.414
https://doi.org/10.18653/v1/2021.emnlp-main.414

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Voice User Interfaces
	2.2 Alexa Skills and Developer Console
	2.3 Generating Paraphrases for Testing Chatbots

	3 Generating Paraphrases for Robust Testing VUIs
	3.1 Generation of Candidate Paraphrases
	3.2 Filtering Paraphrases

	4 Empirical Study Design
	4.1 Study Context
	4.2 Experimental Procedure
	4.3 Tuning the Semantic Threshold for VUI-UPSET
	4.4 Replication Package

	5 Empirical Study Results
	5.1 RQ1: Paraphrase Correctness
	5.2 RQ2: Paraphrase Capability of Finding Bugs
	5.3 Discussion

	6 Threats to Validity
	7 Conclusion and Future work
	References

